

Department of Electrical and Computer Engineering Technology (ECET)

Division of Engineering, Computer Programming, and Technology (ECPT)

EET 4950

 Senior Design Proposal

The Smart Cooler

Submitted by

Clarence Scott and Reuben Taveras

Supervised by

Dr. Ali Notash

July 2, 2021

 ii

Abstract

Coolers are simply used as a portable way to keep things cool, whether it be drinks or

food, among other things. Coolers are mainly designed to retain ice, but what if it could

do more than that?

Given the state of IoT devices that are blooming in this generation, why not a

cooler? By adding a power source to a cooler, it opens the device up to new, smart

possibilities. The Smart Cooler features rechargeable batteries that can be charged from a

120V AC outlet, a 12V car port, or through a solar panel. Charging devices can easily be

done with wireless or wired charging. A locking mechanism prevents the Smart Cooler

from being opened by animals or unexpected visitors. The locking mechanism also can

use RFID to activate using a keychain or card. An LED strip activates when it is dark or

manually to provide light inside. GPS tracking shows the last known location of the

Smart Cooler, allowing someone to find their campsite. Bluetooth speakers are built into

the cooler to provide entertainment for any scenario. The cooler has two separate

compartments for item storage, each with its own temperature sensor. Each compartment

can be set to have a notification appear when the ice has melted in the cooler. A

touchscreen GUI allows the user to monitor temperature, battery life, and settings. The

features can be controlled, and temperature monitored through a Bluetooth app, which

also functions with the GPS system. The cooler has savable profiles so allow for easy

setting configurations. Finally, for added convenience, the cooler will have a flashlight

holder and bottle opener.

Having a cooler with these kinds of capabilities has many advantages and

provides an all-in-one solution for any outdoor event. This cooler is designed to be taken

to the beach, to the woods, and just any backyard party.

 iii

Acknowledgements

We would like to thank Professor Notash for his assistance and guidance throughout the

proposal process. The weekly meeting following suggestions and improvements to the

project really helped to set apart our idea from any other out there.

 iv

Table of Contents

Abstract .. 𝒊𝒊

Acknowledgements .. 𝒊𝒊𝒊

List of Figures ... 𝒗𝒊

List of Tables .. 𝒊𝒙

Chapter 1 Introduction.. 1

1.1 Introduction .. 2

1.1.1 Motivation ... 2

1.1.2 Objective and Features .. 2

1.1.3 Similar and Existing Products ... 4

1.1.4 Smart Cooler Survey ... 6

1.2 Proposed Systems ... 7

 1.2.1 Block Diagram ... 8

1.2.2 Design Engineering Requirements .. 9

1.2.3 Design Engineering Specifications.. 10

1.3 Organization of Report ... 18

Chapter 2 Background Research ... 19

2.1 Introduction .. 20

2.2 Software .. 20

2.2.1 Python .. 20

2.2.2 React Native .. 20

2.2.3 Bluetooth Technology ... 21

2.3 Hardware ... 22

2.3.1 Cooler .. 22

2.3.2 The Lid .. 34

2.4 Power Budget .. 36

Chapter 3 Contribution ... 38

3.1 Introduction .. 39

3.2 Design Integration and Implementation ... 39

3.2.1 Power System .. 39

3.2.2 Device Charging .. 43

3.2.3 Controller ... 45

3.2.4 LED Lights .. 46

3.2.5 GPS .. 48

3.2.6 Locking Mechanism .. 49

3.2.7 Bluetooth Speaker Entertainment System ... 51

3.2.8 Touchscreen ... 52

3.2.9 Mobile App .. 57

3.2.10 Software ... 62

 v

3.3 Design Troubleshooting and Results .. 65

3.3.1 Troubleshooting ... 65

3.3.2 Results ... 67

3.4 Discussion of Success and Failure Rates .. 82

Chapter 4 Non-Technical Issues ... 85

4.1 Budget .. 86

4.2 Timeline .. 88

4.3 Environmental Aspects ... 89

4.4 Health and Safety .. 89

4.5 Ethical Aspects ... 90

4.6 Social Aspects ... 90

4.7 Sustainability .. 90

Chapter 5 Conclusion .. 91

5.1 Summary and Conclusion .. 92

5.2 Suggestions for Future Work .. 92

References ... 93

Appendix A: Equations ... 96

Appendix B: Smart Cooler Survey ... 97

Appendix C: Smart Cooler Survey Results ... 99

Appendix D: Flowchart ... 102

Appendix E: Raspberry Pi Software Code .. 104

Appendix F: React Native Software Code ... 147

Appendix G: Lessons Learned .. 174

Biography.. 178

 vi

List of Figures

Figure 1.1 The INFINITE Smart Cooler ...5

Figure 1.2 The Coolest Cooler ...5

Figure 1.3 Smart Cooler Survey Question 1 Results ..6

Figure 1.4 Smart Cooler Survey Question 3 Results ..7

Figure 1.5 Block Diagram ..8

Figure 2.1 Smart Cooler Dimensions ...23

Figure 2.2 Smart Cooler Top View ..23

Figure 2.3 Smart Cooler Back View with Rendered Environment 24

Figure 2.4 Coleman 100qt Cooler ..24

Figure 2.5 Raspberry Pi 4 ...25

Figure 2.6 Pyle Low Profile Marine Speakers ...26

Figure 2.7 DS18B20 Waterproof Temperature Sensor ..26

Figure 2.8 CdS Photoresistor ..27

Figure 2.9 Micro SG90 Servo ..28

Figure 2.10 Duty Cycle of PWM Signal for SG90 Servo ..28

Figure 2.11 NOCO Genius 10 ..29

Figure 2.12 Eco-Worthy 12V 10W Solar Panel ...29

Figure 2.13 Miady LFP16AH 12V 16Ah LiFePO4 Rechargeable Battery 30

Figure 2.14 BN-880 GPS Module ..30

Figure 2.15 Car Port USB Charger ..31

Figure 2.16 Alitove WS2812B RGB LED Strip ..31

Figure 2.17 RC522 RFID Kit with Blank Card and Key ...32

Figure 2.18 12V to 5V 8A USB Buck Converter ...33

Figure 2.19 DROK 12V to 5V 5A Buck Converter ...33

Figure 2.20 FQP30B06 N-Channel Power MOSFET ...34

Figure 2.21 Qi Wireless Charging Transmitter ..35

Figure 2.22 SunFounder 7” Touch Screen ...35

Figure 2.23 Reed Switch ..36

Figure 3.1 12V 16Ah Batteries ...40

Figure 3.2 Terminal Blocks ..40

Figure 3.3 Lithium Battery Charging Device ...41

 vii

Figure 3.4 Solar Panel ..42

Figure 3.5 Solar Panel Charging Module ..42

Figure 3.6 Running Wires Through Interior Panel ...43

Figure 3.7 Wires Run Through Wall ..44

Figure 3.8 Wired Charging Port ...44

Figure 3.9 Wireless Charging Pads in Lid ...45

Figure 3.10 Blue LEDs, Rainbow LEDs, Red LEDs, White LEDs47

Figure 3.11 Photosensor Mounted on Exterior of Cooler ..48

Figure 3.12 GPS Mounting Bracket ...48

Figure 3.13 Google Maps Using GPS Coordinates ..49

Figure 3.14 Locking Mechanism without Covers ..50

Figure 3.15 Holes for Speakers ..51

Figure 3.16 Bluetooth Speakers Turned On ...51

Figure 3.17 Speaker Amp Board ..52

Figure 3.18 Touchscreen GUI Main Screen ...53

Figure 3.19 Touchscreen GUI Settings Screen One ...54

Figure 3.20 Touchscreen GUI Settings Screen Two ..55

Figure 3.21 Touchscreen GUI Ice Monitor Compartment One Activated 56

Figure 3.22 Touchscreen GUI Ice Replacement Notification56

Figure 3.23 Mobile App Scanning Screen ...57

Figure 3.24 Mobile App Connect Screen ...58

Figure 3.25 Mobile App Main Screen ..59

Figure 3.26 Mobile App GPS Location Screen ..60

Figure 3.27 Mobile App Settings Screen ...61

Figure 3.28 Mobile App Ice Notification Compartment One 62

Figure 3.29 3D Printed Sliding Lock ...65

Figure 3.30 Smart Cooler Front View ..67

Figure 3.31 Smart Cooler Back View ..67

Figure 3.32 Smart Cooler Side View ...68

Figure 3.33 Smart Cooler Top View ..68

Figure 3.34 Smart Cooler Interior View ..69

Figure 3.35 Both Compartments Filled with Food and Ice ...71

Figure 3.36 Cooler Outside with No Ice in Compartments Temperatures71

Figure 3.37 Cooler Outside with Ice in One Compartment Only Temperatures72

 viii

Figure 3.38 Cooler Outside with Comp. One Ice and Food Only Temperatures72

Figure 3.39 Cooler Outside Both Compartments with Ice Temperatures73

Figure 3.40 Cooler Out. Comp. One w/ Ice and Food and Comp. Two w/ Ice Temp ..73

Figure 3.41 Cooler Outside Both Compartments Ice and Food Temperatures74

Figure 3.42 Cooler Inside with No Ice in Compartments Temperatures74

Figure 3.43 Cooler Inside with Ice in One Compartment Only Temperatures75

Figure 3.44 Cooler Inside with Comp. One Ice and Food Only Temperatures75

Figure 3.45 Cooler Inside Both Compartments with Ice Temperatures........................76

Figure 3.46 Cooler In. Comp. One w/ Ice and Food and Comp. Two w/ Ice Temp.76

Figure 3.47 Cooler Inside Both Compartments Ice and Food Temperatures77

Figure 3.48 Temp. Measurements in Comp. One and Comp. Two77

Figure 3.49 Solar Panel Ratings ..78

Figure 3.50 Solar Panel Open Circuit Voltage During Partly Cloudy Day79

Figure 3.51 Solar Panel Short Circuit Current During Partly Cloudy Day79

Figure 3.52 Solar Panel Open Circuit Power During Partly Cloudy Day80

Figure 3.53 iPhone Charging Percentage Over Time..81

Figure 3.54 Android Charging Percentage Over Time ..81

Figure 4.1 Graphical Representation of Timeline ..78

 ix

List of Tables

Table 1.1 Design Engineering Requirements ..10

Table 1.2 Design Engineering Specifications ..11

Table 2.1 Power Budget ...36

Table 3.1 Raspberry Pi Pinout ...46

Table 3.2 System Operation Current Measurements ...70

Table 3.3 Speaker Decibel Rating..82

Table 3.4 Success Criteria ..82

Table 3.5 Final Testing Results..83

Table 4.1 Actual Project Budget ..86

Table 4.2 Senior Design Proposal Timeline ..88

Table 4.3 Senior Design Project Timeline ...88

1

Chapter 1

Introduction

1.1 Introduction

1.2 Proposed Systems

1.3 Organization of Report

Summary

The Smart Cooler is designed to be a multipurpose all-in-one cooler used for parties,

get-togethers, or any social gathering. The cooler features speakers, wireless and

USB charging, an RFID locking mechanism, GPS tracking, rechargeable batteries,

multiple external charging options, touchscreen interface, mobile app support using

Bluetooth, interior LED lights, cup and flashlight holder, and bottle opener.

2

1.1 Introduction

Coolers are an essential part of any sort of outdoor gathering. Whether it be camping,

enjoying the beach, or tailgating, the idea is to have nice cold drinks on a warm summer

day. Coolers do a good job at maintaining temperatures and allowing ice to last longer,

and ideally that’s all they have been designed for. However, they can be designed to do

more. The Smart Cooler was designed to have a plethora of functionality, tailored for any

sort of outing. The goal of The Smart Cooler was to make an all-in-one cooler, bringing

together accessories that are usually bought for gatherings but in one easy to use product.

1.1.1 Motivation

When planning for any social gathering, food and entertainment are the number one

accommodation to allow people to enjoy the gathering. Usually they include music, so

Bluetooth speakers were added. For drinks, to keep them cool, it would be ideal to notify

the user when the ice has depleted. At the beach, for instance, there are no power sources,

so having a power bank adds a level of convenience. Most of the cooler utility is to keep

food and drinks cold, but once you add power to the cooler the applications can now

expand beyond that.

1.1.2 Objective and Features

Once power is provided to the cooler, the possibilities open for more functionality. At the

beach, ideally drinks would be ice cold and opened with a bottle opener while music

plays through waterproof Bluetooth speakers. The risk of bears looking for food can be

prevented with a locking mechanism for the cooler. If the cooler has GPS functionality

and the group becomes lost while exploring, the cooler location can be used to find the

campsite. At night, an interior LED could make it easier to find things inside. App

connectivity suddenly turns an ordinary cooler into a Smart cooler, where the temperature

can be monitored. All of these features will be powered by rechargeable batteries that can

be recharged through an outlet, a 12V car port, or solar panel.

3

Entertainment

Bluetooth speakers attached to the cooler provide ample entertainment for any outing

scenario. The speakers will be waterproof as they will be used for outdoor speakers.

Power Source

Since typically coolers are used in outings, using the cooler power source as a charging

bank for portable devices adds another utility to those who will spend extended periods of

time from a power source. Wireless charging as well as wired charging will be provided.

RFID Locking Mechanism

Animals have a keen sense of smell and tend to rummage around looking for food.

Providing the cooler with a RFID locking mechanism prevents food and drinks from

being scavenged out of the cooler. It also prevents unwanted guests from opening the

cooler as well.

GPS Tracking

Since coolers tend to be left at the campsite when camping, providing the user a means to

locate the campsite via the cooler provides survival functionality. GPS does not require

data or internet, so it may be used in the woods.

Rechargeable Batteries

The batteries powering the cooler require an ample amount of amperage. Therefore, the

cooler will be given rechargeable batteries as a renewable resource of energy.

Multiple External Charging Options

The rechargeable batteries will be able to be charged through a 120V AC outlet, a 12V

car port, or a 12V solar panel.

4

Touchscreen Interface

A graphical user interface will be designed to be used on a touchscreen interface for

intuitive use. The temperature will be displayed for each compartment, along with

accessing settings.

App Support

Temperature monitoring and setting will also be accessible via a mobile app designed for

both Android and iPhone support. The mobile app will interact via Bluetooth to

communicate with the microcontroller.

Night Light

Given there are no lights in locations like the woods, the cooler will have its own LED

light built into the inside. A sensor will sense when it is dark outside and activate the light

when the cooler is opened.

Structural Utilities

The cooler will have cup holders, as well as a bottle opener. A flashlight holder will also

be built into the cooler.

1.1.3 Similar and Existing Products

Similar products have been produced with tremendous interest and success. Looking at

crowdfunding sites like Kickstarter and Indiegogo, two Smart coolers that stand out are

the INFINITE Smart cooler and The Coolest Cooler.

INFINITE

The INFINITE Smart cooler can be found on Indiegogo. The campaign has been closed,

raising $136,106 out of its flexible goal of $25,000 [1]. The cooler features a 550W

blender, wireless charging, LED light, HD built-in camera, Hi-Fi dual-powerful Bluetooth

speakers, digital screen and easy-touch buttons. It has foldable side handles, large sturdy

wheels, side storage, multifunction utensils and cutting board, and 61 quarts capacity. The

cooler claims 7 to 12 days of ice retention [1].

5

 This cooler highlights the importance of functionality. Coolers are used for party

outings and can function as an all-in-one cooler.

Fig. 1.1: The INFINITE Smart Cooler [1]

The Coolest

The Coolest Cooler is considered one of the most successful Kickstarter of 2014, and also

considered one of the biggest Kickstarter disasters. The campaign raised $13,285,266

from 62,642 backers [2]. Ultimately, the founder was unable to provide 20,000 backers

with coolers, blaming tariffs imposed on products imported to the US from China [3].

However, this Kickstarter highlights the demand for a multifunctional Smart cooler with

diverse applications.

 This cooler featured an 18V battery powered rechargeable blender, removable

waterproof Bluetooth speakers, USB charger, LED lid light, gear tie-down, cooler

dividers and cutting board, extra wide easy rolling tires, integrated storage for plates and

knife, and bottle opener.

Fig. 1.2: The Coolest Cooler [2]

6

1.1.4 Smart Cooler Survey

A survey was conducted as a sample size to represent the general population. The survey

is shown in Appendix B with each question asked. The survey resulted in 47 responses,

and the responses can be found in Appendix C. The first question of the survey asked

which feature the participants would be most excited about.

Fig. 1.3: Smart Cooler Survey Question 1 Results

The results show that out of the six choices, the most dominant desired feature is

temperature regulation, with 69.9% of the votes. Second and third were Bluetooth

speakers and wireless charging, respectively. The INFINITE Smart cooler and The

Coolest Cooler both do not have any sort of refrigeration system for temperature

regulation besides insulation. Originally, our design could implement thermoelectric

refrigeration units, however, given advice from the panel, it would be impractical to

design a product that uses such components as they are heavy on power usage and will

not give us the desired results. Therefore, the other features were focused on instead.

 The second part of the survey asked what features would be desired for a Smart

cooler that wasn’t mentioned. The results can be summarized as follows:

• Wheels that work on multiple surfaces

• Temperature monitoring through an app or digital screen

• Removable freezer blocks that can create dividers, shelves, and integrate into the

lid

• Notification when the ice melts

• Maintain different temperatures for different compartments

7

• GPS tracking and a way to contact emergency services

• Screen to play games

• LED light inside

Though there were already plans to implement some of these features such as

temperature monitoring through an app or different temperatures for different

compartments, the other suggestions were nice additions that were considered for the

project. Several of these proposed ideas were not implemented in the two most successful

crowdfunded campaigns mentioned earlier. Therefore, valuable data was obtained from

the survey.

Finally, to have a general idea of what the cooler would most often be used for,

the survey asks where the participant would use the cooler most often.

Fig. 1.4: Smart Cooler Survey Question 3 Results

Most of the results were split between camping and the beach as the places the cooler would

be used most often. With these results, the focus of the project was to obtain features that

would be most beneficial to people mainly to those kinds of outings. The question was also

open for suggestions, which show other uses such as for picnicking, travel, grocery

shopping, etc.

1.2 Proposed Systems

Planning of the Smart Cooler was done by starting with a block diagram. Design

engineering specifications and design engineering requirements show the justifications for

the parts selected for the modules. Each part is described in detail to highlight their

contribution to the overall functionality of the project.

8

1.2.1 Block Diagram

The block diagram shows each module that the cooler will have. There are seven modules

in total, as shown in Figure 1.5, represented by the colored blocks. Figure 1.5 is a block

diagram which details how the different modules will work together to create the entire

system.

Fig. 1.5: Block Diagram

All the modules will be communicating with the microcontroller, as that will be

the “brain” of the system. The microcontroller will be a Raspberry Pi, that contains 40

pins which can be used as GPIO pins and other communication protocols. At least 20 pins

have been mapped out for all modules. The Raspberry Pi will either be acting as a

switching device for larger power sources or will be used with the communication

protocols to send and receive information.

The temperature monitoring module contains digital temperature sensors that are

waterproof and embedded into the frame of the cooler to provide accurate temperature

readings. The microcontroller will then determine whether to notify the user based on the

temperature readings.

The LED light module also has a sensor that detects the amount of light outside.

The analog to digital converter is used so that the Raspberry Pi can read the sensor values.

If the value is determined to indicate a dark environment, the LED light strip will be

9

turned on by the microcontroller. The battery level indicator also makes use of the analog

to digital converter.

The GPS module will be sending its location to the microcontroller. That

information will be relayed to the Bluetooth app so that the location can be recorded on

the map. With the last known location recorded, if someone were to wander off, they

would be able to use the GPS position along with a compass to find the location.

The touch screen will not only display a GUI to the user but will also provide

feedback to the microcontroller. Through the touch screen, the temperature will be able to

be monitored, the LED light can be turned on or off manually, the locking mechanism can

be activated, and the speakers can be turned on or off. The user can configure things such

as the light color, temperature units, auto features, setting and saving profiles, and setting

ice notifications. All of this is configurable through a GUI menu.

The Bluetooth speakers will have a separate Bluetooth module as the Raspberry Pi

will not be able to use audio since some of the features required will need to have audio

disabled. When the user connects to the Raspberry Pi through Bluetooth, someone will be

able to controller the cooler, while that same person or someone else can connect their

phone to the speakers and play music. A power amplifier is required for the speakers as

they are 100W speakers.

The locking mechanism will require a servo to rotate the mechanism into an open

and close position. The locking mechanism will use a reed switch to check if the lid has

been closed all the way and will lock if properly closed.

All of this will be powered by two 12V batteries. The power control unit provides

charging to the batteries by external sources such as an AC outlet, car port, or solar panel.

The batteries will provide power to all the modules, as well as power for any device

connected to the USB charging ports or wireless charger.

To see the program logic of how the microcontroller will be communicating with

all these modules, the flowchart can be found in Appendix D.

1.2.2 Design Engineering Requirements

The Design of the Smart cooler shall include the following required features:

10

Table 1.1

Design Engineering Requirements

High-Level

Requirements

• Temperature monitoring for range minimum of 0 degrees

Celsius (Temperature of ice) accurate to within 1 degree

Celsius.

• Minimum active operation of all systems 12 hours.

• Multiple exterior charging from 120V AC outlet, 12V car

port, or 12V solar panel.

• Mobile app functionality including features such as

temperature monitoring, notification system if temperature

gets out of range, activating locking mechanism and interior

LED, GPS location tracking, and settings.

• 7” touch screen GUI allowing for temperature monitoring,

alert system, activating locking mechanism and interior

LED, and settings.

• Maximum empty weight of 40 lbs.

• Contains a volume of about 1.5 cubic feet for storage.

Mid-Level

Requirements

• Wireless/Wired charging options at 5V, 1 to 3A.

• GPS Tracking with accuracy within 3 meters.

• RFID keyless entry locking mechanism.

• Bluetooth Speakers allowing for minimum 87 dB.

• Solar Panel integration may provide 12V 1.5A charging

power to battery.

Low-Level

Requirements

• Cup holders standard minimum 2” diameter. *

• Wheels capable of handling rugged terrain. *

• Storage space. *

• Interior LED activated when lighting conditions outside are

dark.

• Flashlight holder.

• Bottle opener.

*Denotes features that will be covered in the Shell of the cooler

1.2.3 Design Engineering Specifications

Table 1.2 outlines the engineering specifications of the system’s modules and individual

components.

11

Table 1.2

Design Engineering Specifications

COOLER

Module Specific

Components

Engineering

Specification

Justification

and

Verification

Responsibility

Shell Coleman 100qt Should have cup

holders, wheels,

and be large

enough to

support multiple

compartments,

at least 1.5 cubic

feet of space.

Exterior walls

should be at

least 2’ thick.

Maximum

allowable empty

weight of 40 lbs.

Justification:

Anyone should

be able to move

or load the

Smart Cooler.

Verification:

Smart Cooler

should be

lightweight,

have large

carrying

capacity, and

wheels to help

with

transportation

and loading.

Clarence

Control Microcontroller:

Raspberry Pi 4

Controller will

provide

SPI (Serial

Peripheral

Interface) used

for

communicating

with other

boards

or modules.

At least 20

GPIO pins

needed, with alt

functionality for

SPI and serial

communication.

Bluetooth will

connect with app

at a range of

Justification:

The Pi 4 can

handle the input

and output

traffic and

communicate

with the other

modules. While

connecting to

the HDMI

touch screen or

mobile app.

Verification:

The

microcontroller

will be able to

handle the six

primary inputs,

and four

Team

12

15m, and

microcontroller

will operate

between 3.5-

5.5V.

primary

outputs, and

communicate

with the other

modules. The

microcontroller

has 27 GPIO

pins total with

up to 6 alternate

functions.

Testing will

ensure the

microcontroller

is

communicating

with the

application.

Mobile

Application

Apple or

Android

Smartphone

Bluetooth will

communicate

with

microcontroller

at a range of

15m.

Application will

monitor

temperature of

each

compartment,

ability to

activate locking

and interior

LED, ability to

change settings

(GPS enable,

locking

mechanism

enable, LED

light enable,

speaker enable),

and able to save

profiles.

Justification:

Providing

Android and

iPhone support

allows for the

majority of

users to use the

app. The app

communicating

with the

microcontroller

allows for

remote

monitoring and

setting of the

cooler.

Verification:

Testing will

ensure the

microcontroller

is

communicating

with the mobile

application

using an Apple

or Android

Smartphone.

Reuben

13

Entertainment Pyle Marine

Speakers

Speakers should

be no deeper

than 2”.

Speakers should

operate between

50-200W for a

dB rating of 87

dB.

Justification:

Narrow

footprint so that

they can be

placed in the

walls of the

Smart Cooler.

Speakers must

be heard when

near the cooler.

Verification:

Speakers should

be able to be

heard at least 5

meters away.

Clarence

Amp:

TPA3116

DAMGOO

Provide at least

200W for

Speaker

operation.

Use class D

amplifier for

maximum

efficiency.

Justification:

Exceed

minimum

Wattage needs

for both

Speakers.

Verification:

Speakers should

properly

operate with the

wattage

provided from

the AMP.

Clarence

Sensors Temperature:

DS18B20

Waterproof

Temperature

Sensors

Monitor

Temperature in

compartments to

an accuracy of ±

1.0°C in real

time, minimum

range of at least

0°C

Justification:

The

temperature

sensor will tell

when the

compartment is

too warm and

when ice needs

to be replaced.

Verification:

Monitor the

temperature

with a separate

thermometer in

the

compartments.

Reuben

14

Interior LED Exterior Light:

Photo-sensitive

Sensor

Alitove Led

Strip Lights

Exterior light

sensor will

change output

voltage in low

light conditions

in real time.

LED light strip

will provide

illumination

when light

sensor detects it

is dark outside.

Justification:

Interior lights

are needed for

operation after

dark.

Verification:

Will test and

confirm that

output voltage

changes when

ambient light is

low. Light strip

will activate

when dark

outside or

manually.

Reuben

Power Input

Control

Module

Voltage

Regulator

12V input

power socket

Shall provide the

cooler multiple

charging options

to accept 120V

AC and 12VDC.

Justification:

Allow for

battery charging

from Solar

Panel, outlet

plug, or

automobile

barrel jack.

Verification:

A digital

multimeter will

be used to

confirm that the

module is

supplying the

correct voltages

when both

inputs are used

to pass.

Team

Battery Battery:

LiFePO4

Provide 12V to

the Smart Cooler

modules.

Battery shall

maintain active

operation for at

least 12 hours.

Justification:

Needed to

power systems

when outside

power is not

available.

Verification:

A digital

multimeter will

be used to

Team

15

To be charged

by charging

module.

confirm that the

battery is

supplying the

correct voltages

to pass.

Solar Panel:

Eco-Worthy

12V 10W

12-20V output

voltage, at least

1.5A current

output, at least

14.4W power

output, at least

9.6Ah output

Justification:

The solar panel

will provide

power to the

battery during

daylight hours

and assist with

charging for

nighttime

operation.

Verification:

A digital

multimeter will

be used to

confirm that the

module is

supplying the

correct voltages

when both

inputs are used

to pass.

Clarence

Power Output

Control

Module

Voltage

Regulator

Convert stored

energy in the

battery into

voltages

required for

operation, 5V

and 12V.

Justification:

The Voltage

Regulator will

ensure that the

voltages

supplied by the

batteries are the

correct voltages

to ensure the

modules of the

Smart Cooler

operate

properly

without

damaging

components.

Team

16

Verification:

A digital

multimeter will

be used to

confirm that the

voltage

regulator is

allowing the

correct voltages

to pass.

Exterior USB

Charger:

Damavo

YM1218 USB

C and USB A

Charger socket

Should operate

using either 5V

or 12V input

voltage.

Will output 5V

2.1A for USB A

&

5V 3A for

USB C

Justification:

The charger

will allow

wired charging

of devices.

Verification:

Plug will be

tested with

several USB

devices

Clarence

LID

Module Specific

Component

Engineering

Spec

Justification Responsibility

GPS Module BN-880 GPS

Module

Module will

accurately track

location to

within 3 meters.

Justification:

Allow the user

to mark the

Smart Cooler

and possible

camp site.

Verification:

Google Maps

will be used to

confirm the

accuracy of the

GPS location.

Team

17

Charging

Module

Qi Wireless

Charging

Transmitter

Output at 5W at

a minimum of

100 KHz

Provide 5V and

1A of charging

power to

devices.

Justification:

Allows the user

to charge other

mobile devices

in a timely

manner.

Verification:

Capable of

charging

modern Smart

devices

especially cell

phones.

Clarence

Lock Locking

Mechanism

Sensor:

Reed Switch

Servo:

SG90

Close and lock

the Smart Cooler

using the APP

touch screen or

RFID Keyless

entry.

Provide 180

degree rotation

to position lock

in place.

Justification:

Secure the lid

so that it cannot

be opened on

accident,

unauthorized

people, or

animals.

Verification:

The lock should

engage and

disengage when

signaled by the

Touch screen,

Mobile app, and

RFID keyless

entry.

Team

Touch Screen Sunfounder 7

inch

Shall support

touchscreen

functions and at

least Wide

SVGA

resolution.

Justification:

Allows the user

to interact with

the Micro

controller and

control the

operation of the

cooler.

Verification:

Touching

screen interacts

with GUI and

sets or

configures

Clarence

18

features on

cooler.

1.3 Organization of Report

The report is split into five chapters. Chapter 1 involves the general overview of the

project. It mentions the problem trying to be solved, the motivation, and the proposed

solution, along with similar solutions. The system requirements and specifications

engineered for this project are also in this chapter. Chapter 2 is where the background

research will be evaluated. Any concepts or theory learned will be placed in this chapter,

as well as what hardware and software is needed, and the power budget. Chapter 3 is the

contribution that went towards the design of the project, in other words what went into the

implementation of the project, any troubleshooting that occurred, and the results with

success and failure rates. Chapter 4 involves the non-technical aspects, such as the

timeline followed for the project, the revised budget, environmental affects, health and

safety, ethical aspects, social impact, and sustainability. Chapter 5 gives the conclusion

for the report. References are listed after Chapter 5, followed by Appendices.

19

Chapter 2

Background Research

2.1 Introduction

2.2 Software

2.3 Hardware

2.4 Power Budget

Summary

Any background research conducted for the project is given in-depth. The various

software and hardware used, with reasoning for why each component is used and a

detailed explanation of its purpose are organized in this section. The power budget

is also given.

20

2.1 Introduction

After going through the design engineering requirements and specifications, the desired

parts detailed in this chapter were chosen to fit into the design of this project. The

Raspberry Pi and mobile phone app both used different programming languages, so

separate languages needed to be learned. Since the app would be using Bluetooth, that

also needed to be researched, as that is a field in itself. The cooler features many

components, and those components are highlighted in this chapter. The power budget was

analyzed to help choose the right batteries for the project.

2.2 Software

In order to make use of the GPIOs and communication protocols of the Raspberry Pi,

Python needed to be learned. The mobile app needed to be created for both Android and

iPhone, so React Native was the technology used to develop for both platforms. The

phones needed to communicate wirelessly with the Raspberry Pi, so Bluetooth needed to

be learned.

2.2.1 Python

Python is the most common programming language used for the Raspberry Pi. Many of

the libraries found to interface with the hardware devices were written in Python. A

Python library needed to be found for the MCP3008 ADC, the WS2812B addressable

LEDs, the BN-880 GPS module, the SG90 servo, and the RC522 RFID module. Since

Python is the most common language, it makes it easier to find resources for connecting

with other peripherals. Not only is Python used to communicate with the different

peripherals, but also used to control the GPIO pins to set them high or low, and program

the look of the GUI interface. Even Bluetooth communication was done using Python,

even though Bluetooth can be done using the terminal.

2.2.2 React Native

Given that the project requires a mobile app that can function on both the Android and

iPhone platforms, instead of learning the native code for both mobile phones and writing

and maintaining the code for two separate platforms, a single platform was used instead.

React Native implements JavaScript code that gets built into both Android and iPhone

21

code. The advantage of using React Native is that the code can be written, modified and

maintained in the same language, but can be deployed in both major environments. To

program for the Android, the code is compiled from JavaScript into native Android code

and can be deployed to a test Android phone or Android simulator. In order to develop for

the iPhone, a MacBook must be used. The development environment XCode allows for

React Native to be compiled and deployed to a test iPhone or an iPhone simulator.

2.2.3 Bluetooth Technology

When devices need to send and receive information without the use of Wi-Fi, Bluetooth

tends to be the standard set for close distance communication between devices. Bluetooth

tends to be used to stream audio or send and receive messages between devices. There are

two types of Bluetooth: Bluetooth Classic and Bluetooth Low Energy.

Bluetooth Classic vs Bluetooth Low Energy (BLE)

Both Bluetooth Classic and Bluetooth Low Energy use the 2.4 GHz frequency band to

send and receive information. However, there are differences between the two, thus each

having different uses.

 Bluetooth classic provides two-way communication with an application

throughput of 2.1 Mbps [4]. It’s highly effective at short distances. Bluetooth Classic is

mainly used to stream audio and is commonly used for wireless speakers, headphones,

and in-car entertainment systems [5]. It has a latency of 100 ms and up to 30 mA of

power consumption [4].

 Bluetooth Low Energy has an application throughput of 0.3 Mbps, with a limit of

20 bytes packages allowed to be sent [4]. Bluetooth Low Energy is used for its

communication capabilities but is now also used for indoor positioning [5]. It has low

power consumption (up to 15 mA, but can be 100x lower), with a range of 100 m and a

latency of 3 ms [4].

Bluetooth Properties

Bluetooth’s main advantage is being able to communicate with devices without a router

or access point. To follow the Bluetooth standard, the Bluetooth device must have a

profile defined so it can communicate with other devices. A GATT or general access

profile (GAP) defines the records of Services, Characteristics, and Descriptors. Services

22

are the data structure that contain Characteristics. Characteristics contain information

such as its type, value, properties, and permissions. The permissions allowable are read,

write, and notify. Read and write are self-explanatory, but notify means that when the

Characteristic changes, the device connected to it will be notified of the change and read

the value. Descriptors are just a general description of the Characteristic and is optional.

Each attribute must have a UUID, either a 16-bit value or a custom 128-bit UUID [6].

Device discovery involves the defining general access profile (GAP), where the

device that needs to be discovered is “advertising” its GAP, and the device scanning for

the advertising device is searching and connecting to it. Advertising involves sending

packets continually, so that the device scanning can detect it. The advertising device is the

Bluetooth peripheral, and the scanning device is the Bluetooth central [6].

2.3 Hardware

Given the specifications of the project, these parts were found to accomplish the tasks for

each module. A lot of fabrication will be involved, so general hardware and any 3D

printed components are not included.

2.3.1 Cooler

The cooler will have a structure that allows for ice retention and for all the electronics to

go into. The walls will be built with plastic with some kind of insulation to allow better

temperature regulation. The dimensions of the cooler will be 17” x 36.4” x 17.9”, shown

in Figure 2.1.

23

Fig. 2.1: Smart Cooler Dimensions

Fig. 2.2: Smart Cooler Top View

24

Fig. 2.3: Smart Cooler Back View with Rendered Environment

The Shell

The shell is the platform that everything will be constructed around and on. Since the

cooler would require rugged wheels and a handle, the Coleman 100qt XTREME 5 Day

Cooler was selected as the shell. The cooler lid contains cup holders, while a flashlight

holder and bottle opener were added. It has the required wheels and is advertised as

retaining ice for 5 days.

Fig. 2.4: Coleman 100qt Cooler [7]

25

The Microcontroller

The microcontroller is the brain for this system. It must provide

 serial communication, GPIOs, and SPI (Serial Peripheral Interface) used for

communicating with other boards or peripherals. Bluetooth connectivity is needed to

support the use of a mobile application.

Fig. 2.5: Raspberry Pi 4 [8]

Speakers

Given that the speakers were built into the wall of the cooler, the speakers were

narrow. Also given that there will undoubtedly be dealing with water and moisture

around the cooler and compartments, the speakers needed to be waterproof. The selected

speakers were the Pyle outdoor speakers.

26

Fig. 2.6: Pyle Low Profile Marine Speakers [9]

Temperature Sensors

The temperature sensor first and foremost must be able to reliably track the temperature

in the compartments. Sensors like these are instrumental in telling the microcontroller the

status of the compartments and environment so that it can correctly control the activation

of the refrigeration unit. Given that the readings are required to be fast and in real-time

with an accuracy of ± 1.0°C, the DS1820B waterproof temperature sensors were

selected. The sensors have a rated accuracy of ± 0.5°C with a range of - 10°C -± 85°C.

The module uses three pins: pin 1 is VCC (+3.3V), pin 2 is Data, and pin 3 is Ground.

Fig. 2.7: DS18B20 Waterproof Temperature Sensor [10]

The temperature sensor reads data in Celsius. To convert to Fahrenheit, the

following equation is used.

27

Celsius to Fahrenheit Equation ℉ = ℃ ∙
9

5
+ 32 (2.1)

Light Sensor

The Smart Cooler uses a photosensitive sensor to track the level of light in the outside

environment because this will be what triggers the activation of the internal LEDS. Using

the CdS photoresistor with an analog to digital converter gives the desired light readings.

The photoresistor is essentially a variable resistor that changes with light levels.

When it is dark, the resistance is high, and when it is light, the resistance is low. Since the

measured voltage will be in relation to the light levels, a voltage divider is used. The

voltage across the resistor will change depending on the light levels, between 0 to 3.3V as

that is what the Raspberry Pi outputs. The voltage level measured is converted to a digital

value using the MCP3008 ADC.

Fig. 2.8: CdS Photoresistor [11]

Servo

The locking mechanism uses a hobby servo to rotate the horn and extend the dowel. The

servo chosen is the SG90, with a torque of 2.5 kg/cm, as not a lot of torque is needed for

the project. The application will only lock and unlock the locking mechanism, turning 90

degrees and staying in position.

28

Fig. 2.9: Micro SG90 Servo [12]

The servo pins are red (VCC +5V), orange (PWM), and brown (Ground). The

SG90 PWM pin uses pulse width modulation to determine the position of the servo arm.

The frequency of the PWM signal must be 50 Hz or 20 ms per cycle. The duty cycle, or

on time, can vary between 1 to 2 ms, controlling the position of the arm from 0 to 180

degrees [13].

Fig. 2.10: Duty Cycle of PWM Signal for SG90 Servo [13]

Battery Charger

Given that the system runs on two 12V batteries wired in parallel, the correct battery

charger needed to be found for the specific batteries selected. Looking at the datasheet for

the Miady batteries that were selected, it was specified a charging current of 10 amps.

Therefore, the NOCO Genius 10 battery charger was found. It provides charging for

lithium batteries, as lithium batteries need a certain algorithm to charge fully. Lithium

chargers are designed to use constant current constant voltage charging (CCCV) to fully

charge a battery, where initially it uses a constant current to charge it up to 70%, then

29

switches to constant voltage, where the current decreases as it fully charges [14]. The

NOCO Genius 10 provides 10 amps of charging current for 12V lithium batteries.

Fig. 2.11: NOCO Genius 10 [15]

Solar Panel

To improve the time that the active systems can be on we are using a solar panel to trickle

charge the battery for the Smart Cooler. Because the batteries that will be in parallel have

very specific charging requirements, we need a solar panel with circuitry that is

compatible. The Eco-Worthy 12V 10W solar panel is small enough to use the space on

the back of the shell, applies a 12V input, and is waterproof.

Fig. 2.12: Eco-Worthy 12V 10W Solar Panel [16]

Batteries

The Smart Cooler is powered by two rechargeable lithium batteries that are set up in

parallel. This will functionally create one battery with twice the capacity. The LiFePO4

battery was chosen because it is a rechargeable battery that supports having its terminals

30

connected in parallel. Connecting two batteries with identical specifications allows

double the Ah rating of the battery, while keeping it rated for the same voltage. The

batteries are rated for a maximum discharge current of 42A, and a charging current of

10A.

Fig. 2.13: Miady LFP16AH 12V 16Ah LiFePO4 Rechargeable Battery [17]

GPS

The GPS module communicates with the microcontroller to record the last known

location of the cooler. The GPS module chosen was the BN-880 GPS module, which also

has a built-in compass. The pins for the BN-880 are as follows: pin 1 is SDA, pin 2 is

GND, pin 3 is TX, pin 4 is RX, pin 5 is VCC (+3.6 ~ 5 V), and pin 6 is SCL. It is not

required for GPS to have internet or data, as the GPS modules uses multiple satellite data

to triangulate its position.

Fig. 2.14: BN-880 GPS Module [18]

31

USB Charger

One of the requirements of the Smart Cooler was to incorporate a wired charging option

for Smart mobile devices. The plug supports both popular USB charging options USB A

and USB C.

Fig. 2.15: Car Port USB Charger [19]

LED Light Strip

The LED strip is an RGB addressable light strip. The LEDs are able to change colors and

can be programmed by the Raspberry Pi. The light strip wraps around the interior of the

cooler and can be activated in auto mode when the light sensor detects it is dark outside,

or manually set on and off. The LEDs used on the Alitove LED strip are the WS2812B

LEDs, which are compatible with the Raspberry Pi, and can be programmed to change the

colors of the LEDs.

Fig. 2.16: Alitove WS2812B RGB LED Strip [20]

32

The LED strip wires include VCC (+5V), data signal, and ground. Depending on the

colors of the LEDs, the current draw can change. Each LED is rated for a max current

consumption of 60 mA. Given the LED strip has 30 LEDs per meter, and a total of 2.25

meters is required to wrap around the cooler, the total amount of LEDs and max current

consumption can be calculated.

𝑇𝑜𝑡𝑎𝑙 𝐿𝐸𝐷𝑆 = 30
𝐿𝐸𝐷

𝑚
∙ 2.25𝑚 = 68 𝐿𝐸𝐷𝑠

𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 68 𝐿𝐸𝐷𝑠 ∙ 60𝑚𝐴 = 4.08𝐴

RFID

This specific RFID module was chosen as it is compatible with the Raspberry Pi. The

module comes with a blank card and key. Ideally, the key would be used to lock and

unlock the cooler, as people must always have their car keys, but not their wallet. The

RC522 module uses SPI to communicate with the Raspberry Pi. The pins include pin 1 is

VCC (+3.3V), pin 2 is reset (RST), pin 3 is GND, pin 4 is interrupt (IRQ), pin 5 is MISO

for SPI, pin 6 is MOSI for SPI, pin 7 is serial clock SCK for SPI, pin 8 is serial input (SS)

for SPI. The module uses 13.56 MHz frequency, as that is the frequency allowed to

operate without a license [21].

Fig. 2.17: RC522 RFID Kit with Blank Card and Key [22]

The RFID keychain contains 1kb of data and can be programmed to have a unique

ID identifiable by the RFID reader module [21].

33

Buck Converters

Several of the components require a 5V and 3.3V power supply. The 3.3V devices could

easily be powered by the Raspberry Pi 3.3V pin, but a buck converter was required to

convert the 12V to 5V. There are two buck converters used in this project, one is an 8A

USB buck converter shown in Figure 2.18, and the other is a 5A buck converter shown in

figure 2.19.

Fig. 2.18: 12V to 5V 8A USB Buck Converter [23]

Fig. 2.19: DROK 12V to 5V 5A Buck Converter [24]

The Raspberry Pi and wireless charging pads use the USB buck converter. The other buck

converter is used to power the LED lights, GPS module, and servo.

Switching MOSFET

Since the user has the option to turn feature on and off, MOSFETs are used as switching

devices. The speakers, the GPS module, the LED lights, and the servo for the locking

34

mechanism use FQP30N06 N-Channel Power MOSFETs. These MOSFETS were selected

because they are low logic level MOSFETs that can be activated with a 3.3V GPIO pin

from the Raspberry Pi. The MOSFET is a 60V 32A device, which exceeds the required

power needed for the 12V and 5V devices.

Fig. 2.20: FQP30N06 N-Channel Power MOSFET [25]

2.3.2 The Lid

The lid will feature the touch screen for user interaction and wireless charging. The lid

must provide ample room for the 7” touch screen, as well as cup holders.

Wireless Charging

Another very important requirement of the Smart Cooler is the wireless charging pad. The

Qi wireless charging board made by Adafruit was selected for the project. It has a

charging distance of 2-8 mm which should easily be able to transmit through the plastic

of the lid. Between this and the Wired USB Charger the user will be provided with

charging options that should cover most mobile devices. The wireless charging module

outputs max 1 A at 5 V, so ideal for smartphones. Two of them are recessed into the lid.

35

Fig. 2.21: Qi Wireless Charging Transmitter [26]

Touch Screen

The touch screen is very important as it is designed to be the primary means of interfacing

with the system. This touch screen also supports inputs for up to 5 fingers at once, making

it ideal as the main user interface. The touch screen uses USB for the touch inputs, and

HDMI to display the Raspberry Pi monitor screen.

Fig. 2.22: SunFounder 7” Touch Screen [27]

Lid Position Sensor

For the locking mechanism to activate, the system needs to know when the lid is closed. A

reed switch accomplishes this as it is a magnetic switch that closes when the magnet gets

near the reed switch.

36

Fig. 2.23: Reed Switch [28]

2.4 Power Budget

The power budget shows how much power will be required from the batteries at any

given time. The wattage was derived using the power equation.

Power Equation 𝑃 = 𝐼 ∙ 𝑉 (2.2)

Table 2.1 shows the power budget, with a total required amp of 15.1A. The batteries

selected have a maximum discharge current of 42A.

Table 2.1

Power Budget

Component Model Voltage Amp Watts

Microcontroller Raspberry Pi 4 5V 3A 15W

Temperature Sensor DS18B20 5V 1mA 5mW

Wireless Charging Qi Wireless Charging

Transmitter

5V 1A x 2 =

2A

10W

Wired USB Charging YM1236 Dual USB

Charger

5V 2.1A 10.5W

Solar Panel Eco-Worthy 12V 0.833A 10W

Servo Micro SG90 5V 360mA 1.8W

RFID RC522 3.3V 26mA 85.8mW

GPS Module BN-880 5V 50mA 250mW

Touch Screen Sunfounder 7” 5V 480mA 2.4W

37

Amp Board DAMGOO 5-27V >3A Up to

200W

LED Light Strip Alitove WS2812B RGB

LEDs

5V 4.05A 20.25W

Analog to Digital

Converter

MCP3008 5V 500uA 2.5mW

Total

15.1A 260.3W

38

Chapter 3

Contribution

3.1 Introduction

3.2 Design Integration and Implementation

3.3 Design Troubleshooting and Results

3.4 Discussion of Success and Failure Rates

Summary

The process for building the cooler was documented in this chapter. The design

integration and implementation go into detail of how the cooler was assembled and

what the cooler was designed to do. Any issues encountered during the build and

final results are mentioned. The success and failure rates of the project are also in

depth.

39

3.1 Introduction

This chapter will discuss the contributions of the group members as the project was

completed. It will detail the design and implementation of ideas, and the integration of

said ideas as the project improved through iteration after iteration.

3.2 Design Integration and Implementation

This section discusses the implementation and design process of the project in detail. It

will give detailed breakdowns of the design and integration process for the modules

discussed and presented in chapter 2.

3.2.1 Power System

The system is meant to be a portable power source. It runs on 12V rechargeable batteries

that can be charged through wall outlet, car port, or solar panel. The output of the

batteries provides 12V power to necessary devices, while buck converters are used to

convert the 12V power to 5V.

12V Rechargeable Batteries

The system is designed to be powered by a pair of 12V rechargeable lithium batteries that

are going to be set up in parallel. Initially, it was decided to go with the LiFePO4 that

were rated for 26Ah, but due to availability issues batteries with less capacity were

bought. The batteries used are 16Ah batteries. Regardless, they still provide ample power

needed to run the system. The batteries are a significant amount of the weight in the

system, with that in mind it was decided to place the batteries in the back of the cooler

over the wheels.

40

Fig. 3.1: 12V 16Ah Batteries

Power Distribution

With the system dealing with so many voltages internally a system had to be designed to

properly control and distribute them. Terminal blocks were selected to be the backbone

of the power distribution and should provide a good and simple way to route the different

voltages that will be created from the different charging circuits.

Fig. 3.2: Terminal Blocks

Battery Charging

Rechargeable lithium batteries require special current regulation to properly charge, so to

meet this demand several consumer products had to be bought and modified. These

41

products will facilitate three types of charging options the system which will give the

system charging options which should cover nearly all cases where the Smart Cooler is

being used.

Wall Mounted 120VAC

The main charging option for the system is going to be the 120VAC charging circuit that

is the standard voltage option in the United States. To handle this the NOCO Genius 10

battery charger was selected. This is a consumer product and for it to meet the needs of

this project and be mobile modifications had to be made.

Fig. 3.3: Lithium Battery Charging Device

The charger did come with a mounting bracket that was used to mount it to the interior

wall of the cooler. The charger has two sets of cables connected to it, one that plugs into

the wall outlet and the other which supplies the 12VDC to the batteries for charging. This

12VDC will be used in several other parts of the system thanks to the terminal blocks.

Solar Panel

The solar panel used provides a 12V 1.5A output. It wasn’t selected to completely power

the system, but to just give a trickle charge while the cooler is being used outside. After

doing some battery tests it was determined that the cooler power is not as demanding as

anticipated and even without the solar panel the cooler could last over a week outside.

42

Fig. 3.4: Solar Panel

Fig. 3.5: Solar Panel Charging Module

Car Port Charging

To facilitate the mobile charging from a 12VDC Voltage a cable was bought, and a port

was installed into the cooler that was connected to the terminal box. This connection was

tied into the inputs to the solar charging panel circuit. This circuit handles the 12VDC

generated by the Solar Panel so by routing the car port voltage through it this provides the

charging function and the current adjustment needed for to properly charge the batteries

in maintained.

12V to 5V Buck Converters

The system requires 5VDC in several places to operate and initially buck converters were

used to handle the voltage conversion. During testing and implementation, it became

obvious that the Raspberry Pi and Wireless charging modules required significantly

higher current then the rest of the systems and to meet that demand a buck converter was

selected that supplied a much higher current and that also distributed it via USB C which

43

also happened to be convenient for the connections to our modules. To handle the other

5VDC a buck converter was used that was rated for 5Amp and that more than exceeded

the voltage required for the other modules of the system.

3.2.2 Device Charging

The Smart Cooler will offer several options for device charging to allow the user to

charge most modern mobile device with the battery system. At time of design that this

will require wired and wireless charging options.

Wired Charging

The wired charging functionality will be covered by the dual port car charger. This

charger supplies ports for USB 2.0 and USB type C. These ports will cover most cable

connections for mobile devices. This port was installed and hard mounted into the shell

of the cooler by drilling a hole through the insulation in a convenient location.

Fig. 3.6: Running Wires Through Interior Panel

With the location set for the port, because of the design of the power distribution system,

powering the USB port became just a matter of wiring it into the terminal block on the

12VDC terminal. The figure below shows the interior of the cooler and the wires from

the back of the port to the terminal block.

44

Fig. 3.7: Wires Run Through Wall

With the port properly wired it was then secured in place with waterproof two-part epoxy.

The following figures are of the final location of the port and the port illuminated during

operation.

Fig. 3.8: Wired Charging Port

Wireless Charging

The wireless charging function will cover the charging options for mobile devices not

supported by the wired function. The function will be covered by using two wireless

charging modules.

45

Fig. 3.9: Wireless Charging Pads in Lid

The largest consideration with the wireless charging modules is the significant current

draw needed to power the modules. This was also an issue that we had regarding the

Raspberry Pi because it also required rather high amperage to be supplied over USB.

Thankfully the buck converter that was selected for the needs of the Raspberry Pi has

enough ports to support the wireless charging modules.

3.2.3 Controller

The entire system uses a Raspberry Pi 4 as its microcontroller. The Raspberry Pi either

controls the electronic devices directly, as components run on 3.3V or 5V, or through

GPIO switch that uses a MOSFET to control 12V devices. As the Raspberry Pi provides

power for 3.3V and 5V components, the 3.3V power pin was used to power the analog to

digital converter used for the light sensor and battery level indicator, and the RFID. The

5V power devices, such as the GPS, LED lights, and servo, were powered by a separate

12V to 5V buck converter, as those components would require more amps than the

Raspberry Pi could safely provide. In total, 15 GPIO pins were used, as well as the 3.3V

and ground pins. The following table below shows the pinout, which devices use which

pins on the Pi.

46

Table 3.1

 Raspberry Pi Pinout

Component Pin Name Pin Number Pin Type

MCP3008 (A/D Converter)

3.3V

CLK 23 SLCK

DOUT 21 MISO

DIN 19 MOSI

CS/SHDN 26 GPIO-07

RC522 (RFID)

3.3V

SDA 24 GPIO-08

SCK 23 SCK

MOSI 19 MOSI

MISO 21 MISO

RST 22 GPIO-25

BN-880 GPS Module

5V

SDA

TX 10 Pi RX

RX 8 Pi TX

SCL

Power 40 GPIO-21

Temp Sensors

3.3V

Data 7 GPIO-4

Magnet Sensor

27 GPIO-0

LED Lights

5V

DIN 12 GPIO-18

Servo

5V

Power 36 GPIO-16

DIN 13 GPIO-27

Bluetooth Speakers

12V

Power 38 GPIO-20

3.2.4 LED Lights

The LED light strip was measured and cut to have exactly 73 lights that circle around the

rim of the cooler. The light strip is a 5V powered strip, with each of the LEDs being

RGB. The light strip gets its power from the 12V to 5V buck converter. The color of the

LEDs can be programmatically changed by the Raspberry Pi because the strip has a data

47

pin. The colors can be changed to be either red, blue, white, or rainbow. Other colors can

be attained, as the values are adjusted by setting the red, green or blue values from 0 to

255, 0 being no brightness and 255 being full brightness.

Fig. 3.10: Blue LEDs (Top Left), Rainbow LEDs (Top Right), Red LEDs (Bottom Left),

White LEDs (Bottom Right)

In order to programmatically change the colors of the LEDs, a Python library was used

called rpi_ws281x. This library is used specifically for WS2812B LED strips. With this,

the colors can be adjusted to do different effects, but in this instance, they were only used

to light up as solid colors.

 The lights have the option of being able to be turned on or off on the touchscreen.

They also have the option of being set into auto or manual mode. In manual mode, the

LEDs can be turned on or off, but only when the lid is open. The lid uses a reed magnet to

detect if it is open or closed. This way, the LED lights will not be on when the lid is

closed, possibly draining battery. In auto mode, the LED strip uses a photosensor to

detect the light levels outside, and if the light is detected at a certain threshold, the LEDs

will turn on. The photosensor is encased in a clear plastic case that has been epoxied onto

the cooler to make it waterproof.

48

Fig. 3.11: Photosensor Mounted on Exterior of Cooler

3.2.5 GPS

The GPS module uses 5V power, which it received from the 12V to 5V buck converter.

The GPS module connects the TX and RX pins connected to the RX and TX pins on the

Raspberry Pi, respectively. A bracket was 3D printed for the module, as the cooler is

expected to be transported over rough terrain, so the bracket keeps it from being knocked

out of place.

Fig. 3.12: GPS Mounting Bracket

The library used to get the GPS module working is the gpsd library. The GPS module can

be enabled and disabled by the touchscreen or mobile app. When the GPS is enabled, it

received coordinates, and when it is disabled, it does not receive coordinates. Though the

location cannot be seen on the touchscreen, the coordinates are sent to the mobile app

using Bluetooth. If the GPS module is enabled, it will send the last known coordinates of

the cooler. This allows for the coordinates of the cooler to be saved on the phone, so that

when the user is out of range of the cooler, the last location will still be known. The

49

location can then be viewed on the mobile app using Google Maps. Google Maps can

then provide directions to the location.

Figure 3.13: Google Maps Using GPS Coordinates

3.2.6 Locking Mechanism

The locking mechanism feature allows the cooler lid to be locked and unlocked. The lock

can be activated either by using the touchscreen, the mobile app, or using an RFID tag.

The locking system contains a door position sensor shown on the left and the locking

component shown on the right of the figure below.

50

Figure 3.14: Locking Mechanism without Covers

The door position sensor uses a magnetic reed switch wired in the normally open position

which connects to a Raspberry Pi GPIO. The wiring is simply a 3.3V connection going to

the reed switch, which then goes to the GPIO. The GPIO is set as an input so that when

the reed switch is closed, a voltage is detected at the GPIO pin, telling the Raspberry Pi

that the lid is closed.

 The locking component contains an SG90 servo, a wooden dowel, and a metal

sliding latch. The servo is programmed to rotate only 90 degrees, as the rotational motion

is converted to linear motion with the dowel, creating the exact distance to lock. The main

component is the servo, as that is what is being controlled when the touchscreen or

mobile app tells the sliding lock to activate. The RFID is another form of control. By

simply tapping a RFID tag against the reader, the locking will activate.

 The locking device can also be set to auto by going to the settings menu. In the

auto feature, as soon as the lid is closed, the lock will activate. This is simply for added

convenience. Some logic needed to be added to allow a user to unlock the lid, since

having the lid closed will always lock the lid. Therefore, whenever the lid needs to be

51

unlocked, a three second delay is added to allow the user enough time to open the lid.

After the three seconds passes, the lid will lock again.

3.2.7 Bluetooth Speaker Entertainment System

The Bluetooth Entertainment system consists of marine speakers, the Bluetooth amplifier,

and the Raspberry Pi. Marine Speakers were selected because like everything else in this

project it is expected to operate around water and be able to operate after being splashed.

To recess the speakers in the cooler, much like the wired charging plug, holes were cut

and drilled in the cooler shell.

Fig. 3.15: Holes for Speakers

Powering the speakers would typically come from the amplifier that the speakers are

connected to, however the speakers that were selected have LEDs in them that requires

power.

Fig. 3.16: Bluetooth Speakers Turned On

52

To control the operation of the speakers the amplifier’s operation is controlled by the

Raspberry Pi.

Fig. 3.17: Speaker Amp Board

3.2.8 Touchscreen

The touchscreen used in this project is a 7” display Raspberry Pi compatible touchscreen.

It uses a USB cable to detect input and an HDMI cable, both connections going to the

Raspberry Pi. On startup, the Raspberry Pi loads the program that displays a GUI

interface on the screen. The GUI was created using a library called guizero. The GUI, as

well as the mobile app, are direct inputs that allows the user to control the cooler. The

GUI on startup is shown in the figure below.

53

Fig. 3.18: Touchscreen GUI Main Screen

The GUI main screen features several controls. On the top left are the battery level indicator

and power button. By pressing the power button, the Raspberry Pi will save all current

settings before shutting down so that on startup the cooler will be exactly as it was set

before shutdown. It achieves this by saving a text file on the operating system containing

all the variables of the program and setting the variables on bootup. The battery level

indicator features five bars, from dead battery to full. After draining the batteries, it was

established that when the battery reaches below 12V, the system cannot operate, and when

the battery reaches over 14V, the system is fully charged. The battery level indicator works

by using a simple voltage divider and an analog-to-digital converter. The 12V is converted

to 3.3V using resistors, and a range from 0 to 3.3V allows the system to determine the

voltage level since its proportional to the battery voltage.

 The middle section contains control buttons for the features. The speakers can be

turned on and off. This is attained by splitting the speaker ground connection using a power

MOSFET that is controlled by a Raspberry Pi GPIO. The GPS is also controlled the same

way. When the GPS is turned off, the last known coordinates are still saved onto the cooler.

The locking feature is also controlled on the touchscreen. In the figure above, the locking

buttons are disabled because the lid is open. It doesn’t make sense to lock or unlock the lid

when it is already open, so the buttons are disabled for intuitiveness. The LED lights also

54

contain the same feature but opposite of the lock. When the lid is closed, the LED buttons

are disabled as there is no point of having the LED lights on when the lid is closed. The

bottom values are the temperature measurements for compartments one and two.

 The settings button on the top right of the GUI takes the user to the settings screen,

where the system functionality can be modified a little more advanced.

Fig. 3.19: Touchscreen GUI Settings Screen One

Going down the list, the LED lights can be set to auto or manual mode. Auto activates the

lights when it is dark outside. The LED light colors can be changed to red, blue or white

when in solid mode. When the color effect is set to rainbow, the solid color buttons are

disabled. The lock can be set to auto or manual, where auto will lock the cooler when the

lid is closed automatically. Tapping the “Next” button takes the user to the second

settings screen with more editable features.

55

Fig. 3.20: Touchscreen GUI Settings Screen Two

Here, the user can switch the temperature readings to Celsius or Fahrenheit. Profiles is a

way for different users to save their preferred settings. The cooler can save up to two

profiles. If for instance someone borrows the cooler and changes the settings, the owner

can easily revert back to the original settings by selecting their profile and tapping “Set”.

Basically the profiles save the program variables to an external text file similar to when it

shuts down. Next, the ice monitor setting allows the user to get a notification when the ice

has melted and the temperature is high in the compartment. In Figure 3.20, both

compartment buttons are red because they are not activated yet. First, the user must tap the

compartment they would like to monitor, then hit “Set”. The activated compartment will

turn green, as shown below in Figure 3.21. Both compartments can be activated at the same

time.

56

Fig. 3.21: Touchscreen GUI Ice Monitor Compartment One Activated

Once the compartment goes above 90 degrees Fahrenheit, a notification will display on the

screen with a message telling the user that the compartment ice needs to be replaced.

Fig. 3.22: Touchscreen GUI Ice Replacement Notification

57

3.2.9 Mobile App

The mobile app initializes with a loading screen where the app is scanning for Bluetooth

devices. The screen has an animated cycle showing that scanning is in progress.

Fig. 3.23: Mobile App Scanning Screen

Once the app has identified a Smart Cooler device, the screen then changes to ask the user

if they would like to connect to the device.

58

Fig. 3.24: Mobile App Connect Screen

Once connected, the mobile app will start receiving data from the Raspberry Pi. The

figure below shows the options on the main screen. The top left shows a cogwheel which

is a settings button that will load the settings screen. The battery image on the top right

shows the battery level. The speakers, GPS, lock, and LED lights can be powered with

the slider buttons, and then the temperatures for both compartments and the GPS location

are shown below.

59

Fig. 3.25: Mobile App Main Screen

When the “View” text is pressed for the GPS location, the app uses Google maps to show

the cooler location. The Raspberry Pi is emitting GPS coordinates, so the coordinates that

get entered into Google maps are latitude and longitude coordinates.

60

Fig. 3.26: Mobile App GPS Location Screen

The settings screen has several customizable features shown in the figure below. Basically

everything that can be changed on the touchscreen can also be changed on the mobile app.

Note that the user cannot set or save profiles, as well as enable ice notifications on the

mobile app. That would have to be done on the touchscreen only.

61

Fig. 3.27: Mobile App Settings Screen

If ice notification are enabled for any compartment, the mobile app will notify the user by

displaying a button on the top for the compartment that requires ice.

62

Fig. 3.28: Mobile App Ice Notification Compartment One

The mobile app was created using React Native. The app was deployed on both an iPhone

11 and Galaxy S9. To incorporate Bluetooth into the app, the “react-native-ble-plx”

library needed to be implemented. Also, to develop for an iPhone, an apple MacBook

must be used to deploy.

3.2.10 Software

There are several scripts that were written for this project. The Raspberry Pi required a

script that would start on bootup, and well and the main functioning script. The mobile

app also required its own script programming. The Raspberry Pi flowchart can be seen in

Appendix D and software code can be seen in Appendix E. The mobile app code can be

seen in Appendix F.

63

Raspberry Pi Software

The Raspberry Pi uses the Python programming language, so all the scripts and libraries

used were in Python. Initially, the Raspberry Pi has a script that starts on bootup. The

tasks that get complete on startup is that the necessary serial communication socket get

enabled for the GPS to read the coordinates. The next part is to execute the actual main

program.

 Once the main program gets executed, the first thing that happens is the program

looks for a file that has stored the setting variables. When the cooler is powered off, it

saves the current settings into a text file stored on the Raspberry Pi. On bootup, the

program initializes the main variables for the program uses that text file so that the cooler

will contain the same settings it had before it shut down, instead of resetting every time it

is powered up.

 Once the initial variables are set, the program loads up the touchscreen GUI. The

GUI uses a Python library called guizero. The library simplified the process of adding

text, images, buttons and screens to the project. The library uses a loop to detect user

activity and is always set as the last loop initialized in the program, per the

documentation. The GUI takes care of the front-end logic. What happens behind the

scenes is much more.

 Since Bluetooth needed to be used, the program sets up the Raspberry Pi as a

Bluetooth Low Energy (BLE) device. The Bluetooth service uses the dbus service loop to

send and receive information. Note that the GUI requires a loop, while the Bluetooth

service requires another loop. To run two loops, and the other loops mentioned later,

Python threading was used. This will be discussed in more detail in section 3.3. For

Bluetooth to advertise to other devices, a Bluetooth service needed to be initiated. The

service contains the characteristics, or the variables, that will be read and written to. The

service and characteristics require UUIDs, which are basically like serial numbers. The

program has 15 characteristics being advertised. They include the Bluetooth speakers

power, the LED lights power, the lock enable, the GPS power, compartment one

temperature, compartment two temperature, GPS location reading, LED mode setting,

LED color, LED effect, lock mode setting, temp units setting, battery level reading,

compartment one ice notification, and compartment two ice notification. All of these

characteristics either send the state of a variable to a requesting device or writes over the

variable from the device.

64

 There are five loops total, one for the GUI, Bluetooth, RFID, LEDs, and the main

loop. The RFID loop simply waits for an RFID tag to be read by the RFID reader and will

execute. Once done executing, it will wait for another tag reading. The LED lights also

needed to be one its own load for the library that runs the LED lights.

 The main loop is used to read sensor values and set the variables accordingly. The

loop first reads the light sensor value. If the LED lights are set to auto, the sensor value is

used to detect if it is dark outside and activate the LED lights if it is. Next the battery

level is also read. Both the light sensor and battery level use the analog to digital

converter to read values. Then the temperature sensor values are read in Celsius. If the

temperature units are changed in the settings, then the temperature values will be in

Fahrenheit. These temperature readings are used for the ice notification system. If the

temperature is above a certain point, then the notification will activate. If the lock is set to

auto, then the lid is checked to see if it is closed, and if so, lock the lid. If the GPS module

is on, the GPS coordinates will be checked. The loop then sleeps for 1.5ms to allow itself

time to finish executing all tasks before restarting.

Mobile App Software

The mobile app uses React Native to deploy to both Android and iPhones. The library

uses JavaScript, which is a popular web browser-based programming language. The main

function of the mobile app is to communicate with the Raspberry Pi using Bluetooth.

When the app is first launched, the app does a scan for Bluetooth devices. It continues to

scan until it finds a device names “The Smart Cooler”, and then tries to connect. On first

time connecting, an authorization will be prompted, and by clicking “OK” it should

authorize. Then the connect screen shows. By pressing connect, the mobile app and

Raspberry Pi are now able to send and receive data to each other.

 React Native works by using components. Each component can have its own state,

and once that state changes, the component re-renders. Once connected, the program

reads the different characteristics available from the Raspberry Pi. These characteristics

each become their own component, and the variables is what becomes the state of the

component. So, say for example the LED lights button is set to “OFF”, so the component

state for the button will be off, and the button will be rendered off. If someone were to

press the LED lights button on the touchscreen on, the Bluetooth would send a variable

set to “ON”, and the app will change the state of the LED lights component to on and re-

65

render the button to be on. This is essentially happening to any of the buttons on the

mobile app. Aside from the buttons, there are the temperature readings, the battery level,

and GPS coordinates which can only read the value from the Raspberry Pi but not modify

it. The GPS is simply a button that takes the coordinates and uses a google maps link. The

mobile app can tell the difference between characteristics by the UUID.

3.3 Design Troubleshooting and Results

Any issues that were encountered during the process are discussed in this section. Though

minor issues aren’t mentioned like wires not being in the right place or parts suddenly not

working from being accidently disconnected, they have occurred. The final results of the

project are also shown.

3.3.1 Troubleshooting

A lot of 3d printing needed to be done for the project to create custom parts. First was

making sure the printer was set to the correct settings. The program used to slice the

models was Ultimaker Cura. Because some of the models required printing surfaces that

were above the build plate, the program needed to be modified to allow printing support

beams. For instance, the sliding lock that was printed needed to have a hollow case, so the

program filled in the gap with support beams.

Fig. 3.29: 3D Printed Sliding Lock

However, looking at the print, the support beams made the part unusable, unless the

support beams were taken out by cutting and sanding. The hassle was avoided by just

buying metal latching locks. Also, the plastic strings were extruded out of the main body,

making the print look sloppy.

66

 Another issue was with the main program. Unfortunately for the program, several

loops needed to be run at once. Bluetooth needed to use a loop, the touchscreen GUI

needed a loop, the LED light strip had its own loop, the RFID required its own loop to

wait for an RFID device to activate, and a separate loop was run for all the sensor data.

Unfortunately, not all these interfaces could be run on the same loop, as some wait for a

response, which would halt the program. To fix this, Python threading was used.

Threading allows the users to run code concurrently. "A thread is a separate flow of

execution. This means that your program will have two things happening at once. But for

most Python 3 implementations the different threads do not actually execute at the same

time: they merely appear to" [29]. Initially there were more than five threads, however,

issues started to occur where some threads weren't running, so the number was reduced.

 Another issue was with setting the LED lights to auto. When the LED lights are set

to auto, the Raspberry Pi reads the value of the photosensor to determine if it is dark outside.

Initially there were issues as the light from the cooler was affecting the sensor value. Since

the LED lights were so bright, when the lights are activated, the light reflects out of the

cooler and radiates to make its surrounding area more visible, which would then cause the

photosensor to tell the Raspberry Pi it was light outside. This caused a perpetual on and off

cycle where the cooler is placed outside in the dark, the light would turn on, and since the

photosensor was reading light values it would turn off the lights. The lights would then turn

back on as it was dark outside, and the cycle would continue. To fix this, a variable was

added in the program to save its state, where once the lid is open and it is dark outside, turn

and keep the lights on until the lid is closed.

 For the locking mechanism, there were three devices that needed to share a ground.

The servo, the RFID, and the door position sensor all shared a ground. To connect all three

devices, a quick connect was used. The quick connect allowed the simple connection of

pushing the wires into the quick connect, and then squeezing the quick connect closed to

join the connections. However, upon testing it was discovered that the ground connects

from the quick connects were not connected. The door position sensor and servo was

working, but not the RFID. After checking the wiring of the RFID, the conclusion was that

the ground was possibly not connected. It was assumed that the wire gauge used for the

quick connect was too small, therefore not providing a reliable connection. The solution to

this was not to use the quick connects, but to solder all the connections together.

67

3.3.2 Results

The final look of the cooler as well as system testing is outlined in this section. Systems

that needed to be tested include the temperature compartment levels, solar panel power,

USB and wireless charging capabilities, car battery charging, and sound level of speakers.

Final Look

The final look of the cooler is as follows. The front of the cooler features the locking

mechanism, the Bluetooth speakers, the USB charging ports, light sensor, and the power

button.

Fig. 3.30: Smart Cooler Front View

The back of the cooler features simply the solar panel.

68

Fig. 3.31: Smart Cooler Back View

The side of the cooler features the charging ports for the AC outlet and 12V car port, as

well as the flashlight holder and bottle opener.

Fig. 3.32: Smart Cooler Side View

The top of the cooler features the touchscreen and wireless charging pads.

69

Fig. 3.33: Smart Cooler Top View

The interior features the electronics, LED light strip, and different compartments with lids

and temperature sensors.

Fig. 3.34: Smart Cooler Interior View

Power analysis

Looking at the power budget, the system was expected to have a current consumption of

about 15A when the entire system is in full operation. However, after testing, realistically

the system only consumes about 1A when in full operation. The system current

consumption was testing by breaking the circuit at the battery and using a multimeter to

measure. The following table show how when a feature is added, the current goes up.

70

Initially current is about 410 mA with the power on and the Raspberry Pi and touchscreen

running.

Table 3.2

System Operation Current Measurements

Component Total Current (mA)

Startup, Just Raspberry Pi and touchscreen running. 410

Phone Connected to USB Charger 490

One Wireless Charger Used 550

Second Wireless Charger Used 680

Speakers (Max Volume) 770

LED Lights (White) 920

These components affected the batteries the most and as each function was powered, the

current consumption increased till it reached about 1A. The system can run with everything

powered for about 28 hours. However, if the system is used moderately, it can run for

several weeks.

Temperature Monitoring

To test the temperature retention in the cooler, tests were conducted both in an outside and

inside environment. First the tests were conducted outside. The tests that needed to be done

were to monitor the temperature when there is no ice in the cooler, where there is ice in one

compartment only, when there is ice and food in one compartment only, when there is ice

in both compartments, when there is ice and food in one compartment and ice in the second

compartment, and when there is ice and food in both compartments. The tests with no ice

inside the compartments were only run for an hour to provide a control measurement. The

rest of the tests were run in a three-hour period and temperatures were recorded every half

an hour due to limited time. When ice or food was placed into the compartment, the

majority of the space was filled. About 15lbs of ice was placed into each compartment. Fig.

3.35 shows how the compartments with both food and ice were filled.

71

Fig. 3.35: Both Compartments Filled with Food and Ice

Fig. 3.36: Cooler Outside with No Ice in Compartments Temperatures

72

Fig. 3.37: Cooler Outside with Ice in One Compartment Only Temperatures

Fig. 3.38: Cooler Outside with Compartment One Ice and Food Only Temperatures

73

Fig. 3.39: Cooler Outside Both Compartments with Ice Temperatures

Fig. 3.40: Cooler Outside Compartment One with Ice and Food and Compartment Two

with Ice Temperatures

74

Fig. 3.41: Cooler Outside Both Compartments Ice and Food Temperatures

Note that when both compartments have ice in them, the temperatures are about the same

for both compartments. The outside temperature does not affect the inside temperature of

the cooler. When ice is in one compartment and no ice in the other compartment, the other

compartment does a good job of maintaining its temperature. The lowest temperature

reached was 37.6⁰F.

Next, the cooler was placed inside a house as the inside environment where the

temperature was maintained at 76⁰F.

Fig. 3.42: Cooler Inside with No Ice in Compartments Temperatures

75

Fig. 3.43: Cooler Inside with Ice in One Compartment Only Temperatures

Fig. 3.44: Cooler Inside with Compartment One Ice and Food Only Temperatures

76

Fig. 3.45: Cooler Inside Both Compartments with Ice Temperatures

Fig. 3.46: Cooler Inside Compartment One with Ice and Food and Compartment Two

with Ice Temperatures

77

Fig. 3.47: Cooler Inside Both Compartments Ice and Food Temperatures

In all the temperature results for the inside environment were very similar to the outside

environment. The lowest temperature reached for the inside environment was 38.4⁰F.

Tests were conducted to measure the ice retention and temperature ranges in the

cooler for 24 hours. The temperature ranges are in Fahrenheit were measured every three

hours for 24 hours. This test featured only ice and there were no drinks or food inside the

cooler. The graph in Figure 3.35 shows the temperature maintained in compartment one

while the temperature in compartment two was the outside temperature. The ice poured in

was only about 7lbs.

Fig. 3.48: Temperature Measurements in Compartment One (Ice) and Compartment Two

(No Ice)

78

Solar panel charging

The ratings found on the back of the solar panel are shown in the figure below.

Fig. 3.49: Solar Panel Ratings

The panel is rated to have an open circuit voltage of 22.41V and a short circuit current of

610mA. The panel is also rated for 10W. To measure the open circuit voltage, the solar

panel was disconnected, and a multimeter was used to measure the voltage across the panel.

The following figure below shows the results, where the voltage was measured during a

partly cloudy, which is why there are so many peaks. The max voltage recorded was 21.6V

when the sun was exposed but went down the lowest of 18.4V when a cloud covered the

sun.

79

Fig. 3.50: Solar Panel Open Circuit Voltage During Partly Cloudy Day

The short circuit current was measured the same way as the voltage was measured. The

highest recorded current measurement was 364mA when the sun was bright and the lowest

recorded was 15.2mA when a cloud covered the sun.

Fig. 3.51: Solar Panel Short Circuit Current During Partly Cloudy Day

The wattage was calculated by using the power equation (2.2) in Appendix A. The max

wattage recorded was 7.9W while the lowest recorded wattage was 275mW.

80

Fig: 3.52: Solar Panel Open Circuit Power During Partly Cloudy Day

Car battery charging

Unfortunately, there were issues trying to get a measurement for the car charging. The car

port voltage was measured at 13.6V. However, attempts at measuring the current were not

working. The circuit was broken at one of the battery terminals and the multimeter

completing the connection, but no current was measured.

Charging of devices

To test the USB charging and wireless charging of the system, an iPhone and Android

phone were used. The iPhone was tested on the USB charger on the cooler, while the

Android was tested on the wireless charger. The figure below compares using the cooler

USB charger, which is 5V 2.1A, and the iPhone power adapter, which is 5.2V 2.4A. The

plot shows that the charging capabilities are very similar.

81

Fig. 3.53: iPhone Charging Percentage Over Time

For the Android, the wireless charging pad was compared to the Android phone power

adapter. The wireless charging pad is rated for 5V 1A charging, while the Android power

adapter is rated for 5V 2A. It can be seen from the figure below that the power adapter took

approximately 100 minutes to charge, while the wireless charging pad took 220 minutes.

Since the wireless charging is rated for less amps, it would make sense that the charging

takes longer.

Fig. 3.54: Android Charging Percentage Over Time

82

Speaker ratings

In order to measure the decibel rating of the Bluetooth speakers, a sound meter app called

“Decibel X” was downloaded on an iPhone. The table below shows the decibels for a

comfortable listening level at about 78dB. When the speakers were set to max volume, the

decibels were at 89dB.

Table 3.3

Speaker Decibel Rating

Distance (feet) Decibel Rating (dB)

2 78

10 64.8

15 62.3

20 60

3.4 Discussion of Success and Failure Rates

The success criteria are outlined for our project in the following table.

Table 3.4

Success Criteria

Subject Success Criteria

Shell 1) Does the Cooler retain Ice for a minimum of 12 hours?

2) Does the empty weight stay less than 40 lbs?

3) Does the storage volume measure 1.5 cubic feet?

Touch Screen 1) Does the touch screen respond to touch inputs correctly 9/10

times?

Controller 1) Does the microcontroller properly control the system without

errors 19/20 times?

App integration 1) Does the App take full control of the system without interference

9/10 times?

Power System 1) Does the system properly power on and off 95% of the time

19/20?

83

GPS 1) Does the GPS module accurately track the cooler’s location 95%

of the time?

Locking

mechanism

1) Does the lock engage and disengage when signaled by the Touch

screen, Mobile app, and RFID keyless entry 9/10 times?

Table 3.5

Final Testing Results

Subject Success Criteria

Shell 1) Does the Cooler retain Ice for a minimum of 12 hours?

2) Does the empty weight stay less than 40 lbs?

3) Does the storage volume measure 1.5 cubic feet?

 21 hours

 43 lbs

 1.2 cubic ft

Touch

Screen

1) Does the touch screen respond to touch inputs

correctly 9/10 times?

 25/25

Controller 1) Does the microcontroller properly control the system

without errors 19/20 times?

 20/20

App

integration

1) Does the App take full control of the system without

interference 9/10 times?

 20/20

Power

System

1) Does the system properly power on and off 95% of the

time 19/20?

 50/50

GPS 1) Does the GPS module accurately track the cooler’s

location 95% of the time?

 15/15

Locking

mechanism

1) Does the lock engage and disengage when signaled by

the Touch screen, Mobile app, and RFID keyless entry

9/10 times?

 50/50

The Smart Cooler was able to meet most of the success criteria. The largest and most

glaring shortcoming came regarding the storage volume and the weight of the unit. These

are mistakes that could have been addressed in the design phase with more emphasis on

the size and weight specification of the parts that were researched. The touch screen was

tested constantly during the construction of the system and simply while initially was

thought to be a point of failure proved to be very consistent. The microcontroller was

84

accurate did not error or fault during testing. It is worth mentioning that sometimes the

controller would slow for a moment but never failed to properly execute the command

issued. Once the mobile app was designed it was consistent and error free while

connected to the system, which led into the power testing as well. When the Power

button was added to the GUI and the power down sequence was set and programmed the

unit powered down effectively and did not fault during testing. The GPS module was

accurate every time that it was turned on during testing and properly pinned the coolers’

location. The locking mechanism was tested using a protocol that was designed to test

the RFID reader and the locking mechanism at the same time. The system was locked

using the RFID badge, confirmed that it was locked, unlocked with the RFID badge and

opened. This protocol was run 25 times meaning that the lock was cycled 50 times using

the RFID badge and the other access points were tested during the other operational tests

of the system. Overall, the issues that did not meet the success criteria were related to the

shell and some of the components selected, not the electronic or mechanical systems.

85

Chapter 4

Non-Technical issues

4.1 Budget

4.2 Timeline

4.3 Environmental Aspects

4.4 Health and safety

4.5 Ethical Aspects

4.6 Social Aspects

4.7 Sustainability

Summary

The budget for the project is outlined with the price of each item. The timeline gives

the project deadlines for completion of each phase. The project is looked at as a

whole as the impact it would have on society, including the effect on the

environment, the health and safety impact, ethical and social aspects, and the

sustainability of the project.

86

4.1 Budget

One of the requirements for the project was to adhere to a $700 budget, approximately.

With the approval of the professor, the budget can go over if requested, but the goal of

this project is to stay to the initial budget. However, a lot of modifications and

adjustments needed to be made, so the project did run over the budget.

Table 4.1

Actual Project Budget

Modules Parts

Unit

Cost Quantity Cost

Structure/Chasis

Cooler Coleman 100qt $69.97 1 $69.97

Micro Controller

Micro Controller Raspberry Pi 4 $35.00 1 $35.00

Temperature

Regulation

Temperature Sensor

DS18B20 Waterproof Temp

Sensors $2.20 2 $4.40

Power Control Unit

Charging Applications Qi Wireless Charging Transmitter $26.95 2 $53.90

Solar Panel ECO-Worthy $33.00 1 $33.00

Battery Miadi LFP16AH $59.99 2 $119.98

Wired USB Charging YM1236 Dual USB Charger $9.59 1 $9.59

AC Battery Charger NOCO Genius10 $64.96 1 $64.96

12V-5V Buck Converter

DROK 5A USB Voltage

Regulator $9.99 1 $9.99

12V-5V Buck Converter

Yipin Hexha DC 5V Converter

Module $14.99 1 $14.99

Locking Mechanism

RFID RC 522 $5.49 1 $5.49

Servo Micro SG90 $5.95 1 $5.95

87

LED Lights

LED Light Strip

Alitove WS2812B RGB LED

Strip $23.99 1 $23.99

Photoresistor Photocell $0.95 1 $0.95

GPS

GPS Module BN-880 GPS Module $18.99 1 $18.99

Inputs

TouchScreen Sunfounder 7 inch $65.99 1 $65.99

Outputs

Speakers Low Profile Marine Speakers $29.99 1 $29.99

Amp board TPA3116,DAMGOO $22.99 1 $22.99

Other Components

Analog to Digital

Converter MCP3008 $3.75 1 $3.75

Misc

MOSFET FQP30N06 N-Channel MOSFET $0.90 3 $2.70

Lid Position Sensor Magnetic Reed Switch $5.00 1 $5.00

Terminal Block

600V 25A Dual Row Screw

Terminal $2.83 2 $5.66

Insulation Shield 3MM Reflective Foam Insulation $16.88 1 $16.88

Connector Plug LanHong 2 Pin Connector Plug $1.20 2 $2.40

Foam Board 1" Thick Polystyrene Foam Board $20.99 1 $20.99

USB Cable DTECH Type A to A USB Cable $6.98 2 $13.96

Power Switch

Magic&Shell Round Rocker

Switch $1.75 1 $1.75

Drain Plug Cooler Drain Plug Replacement $11.99 1 $11.99

Plexiglass Optix Plexiglass $34.00 2 $68.00

3d Printing Filament 1.75mm PLA Filament 1kg $20.00 1 $20.00

Solar Panel Metal

Bracket Armstrong 2' Cross Tee $1.90 1 $1.90

Sliding Lock ReliaBilt Zinc Steel Barrel Bolt $2.68 1 $2.68

88

Wooden Dowel Wooden Dowel $1.50 1 $1.50

Various Screws and

Bolts Various Screws and Bolts $5.00 1 $5.00

Total $774.28

4.2 Timeline

The timeline gives start dates and end dates for each phase of the project. The original

project timeline was extended as the project was not complete for the first semester taken

for Senior Design Project. Table 4.3 reflects the extended timeline.

Table 4.2

Senior Design Proposal Timeline

Task Length (Days) Start Date End Date

Research Ideas 17 05/12 05/28

Research Components 51 05/18 07/09

Proposal Report 26 06/07 07/02

Proposal Presentation 7 07/02 07/09

Proposal Website 59 05/12 07/09

Table 4.3

Senior Design Project Timeline

Task Length (Days) Start Date End Date

Buy Parts 19 07/12/2021 07/31/2021

Part Testing and Validation 13 08/01/2021 08/14/2021

Individual Subsystem Testing 44 08/07/2021 09/20/2021

Fabricate and Installation 175 09/01/2021 02/23/2022

Mobile App Development 221 08/01/2021 03/10/2022

89

OS Software Development 221 08/01/2021 03/10/2022

Final Unit Testing 26 03/20/2022 04/15/2022

Project Report 64 02/10/2022 04/15/2022

Project Presentation 21 04/01/2022 04/22/2022

Project Website 264 08/01/2021 04/22/2022

Figure 4.1: Graphical Representation of Timeline

4.3 Environmental Aspects

In order to keep the system environmentally friendly and for convenience of the user, the

cooler has 12V rechargeable LiFePO4 batteries. Lithium batteries have more cycles than

SLA batteries, which means it will last longer. Having rechargeable batteries reduces the

waste of disposable batteries and has renewable energy benefits. Since the Smart Cooler

has a 12V solar panel attached to it, the batteries will be able to be recharged from the

sun. This can also be extended to the AC input as well. If the user’s house has solar

panels, then the cooler can be recharged through the limitless power of the sun, leaving

no carbon footprint.

4.4 Health and Safety

The health and safety of the user is the most important aspect for this project. That is why

extensive research was conducted into the power source. Making sure the batteries are

worked within their safety specifications, as well as proper charging and discharging,

making the cooler waterproof so components don’t get damaged, proper ventilation to

90

maintain a safe operating temperature for all the components, and extensive testing of

components individually and assembled ensured a safe a reliable product that can be

distributed without worry.

4.5 Ethical Aspects

Holding to the IEEE Code of Ethics, the “safety, health, and welfare of the public” is the

top priority [30]. The Smart Cooler attempts to use technology to improve the

functionality of an item that has been used for decades with minimal improvements and

advancements. Given that the health and safety of the user is the top priority, testing of

the product along with the success criteria specified will ensure that everything is

working properly, and should the system fail, it will not do so in a way that endangers the

user or surroundings.

All references and materials used in this project have been cited and proper credit

given to the original sources.

4.6 Social Aspects

Party engagements are the ideal scenario for the Smart Cooler. Having an all-purpose

party cooler could possibly trend because of its utility, and possibly allowing something

like a smart cooler to become ubiquitous.

 Having GPS to find the location of the cooler will prevent people from getting lost

in the woods. “Around 2,000 people get lost in the woods every year” [31]. Not everyone

in the woods knows wilderness survival skills necessary to find their campsite.

4.7 Sustainability

The batteries used are 2000 deep cycle LiFePO4 batteries. Lithium batteries have the

advantage of having more cycles, faster charge time, and are lightweight compared to

SLA batteries. Lithium batteries last longer, so therefore the sustainability of the product

was taken into consideration. If the batteries were to be charged every day, they would

last 5 and a half years.

91

Chapter 5

Conclusion

5.1 Summary and Conclusion

5.2 Suggestions for Future Work

Summary

The long list of features that the Smart Cooler has went through a lot of research

and analysis. With this list of wanted features, components were researched,

specifications were developed, and success criteria were specified. The cooler has a

lot of possible implementations and can only be improved upon in the near future.

92

5.1 Summary and Conclusion

The Smart Cooler is bound to be a successful product. The success of the INFINITE

cooler and The Coolest Cooler shows that demand for a multipurpose cooler is plentiful.

Each cooler product had its own set of features that allowed convenience for all sorts of

possibilities. There are many different situations that a cooler can be used for, so to cater

for all possibilities is the goal.

 Given that the Smart Cooler will have a battery source for power, this allows the

addition of many features. The smart capabilities added to this cooler makes it a more

modern solution to your typical gathering. The power budget shows how resources will

be allocated, and the batteries selected provide plenty of power that allows the cooler to

operate for days. This functionality was built and tested for safety. All the modules have

certain criteria that have been met, and testing ensured that every module is working as

intended. On initial iteration of any product, the development cost is usually higher than

when something is mass produced. So even though this design went over the initial

budget, future iterations could drop the cost and make it more affordable, as was done

with the INFINITE cooler and the Coolest Cooler.

 Having a cooler with smart capabilities has many positive implications in society.

It can be the object of the party, the storage to preserve food, or even used in other

scenarios besides just parties. Whatever the use case, the aim of the project is to improve

upon the typical cooler, giving more functionality that turns something simple to an

advanced, smart item.

5.2 Suggestions for Future Work

The main suggested improvement for this type of project is to prolong the temperature

regulation. By adding more batteries, or batteries with more Ah ratings, thermoelectric

refrigeration units can be added to the cooler, and allowing temperature regulation and ice

retention for longer than seven days would be a tremendous improvement. However,

adding more batteries, and more powerful batteries at that, will increase the price of the

product. Of course, additional features can be included as there will always be something

that can be added. One important feature that can be added is for the cooler to have a way

to contact emergency services. For the cooler to have that feature, it would need a SIM

card, unfortunately.

93

References

Electronic Sources from Internet

[1] “INFINITE: World’s Most Versatile, Smart Cooler,” Indiegogo. [Online] Available at:

https://www.indiegogo.com/projects/infinite-world-s-most-versatile-Smart-cooler#/

(Accessed June 17, 2021)

[2] R. Grepper. “Coolest Cooler: 21st Century Cooler That’s Actually Cooler,” Kickstarter,

03/12/2018. [Online] Available at:

https://www.kickstarter.com/projects/ryangrepper/coolest-cooler-21st-century-cooler-

thats-actually (Accessed June 17, 2021)

[3] K. Schlosser. “Coolest Cooler shuts down after 5-year saga, leaving 20,000 backers

without Kickstarter reward,” GeekWire, 12/09/2019. [Online] Available at:

https://www.geekwire.com/2019/coolest-cooler-shuts-5-year-saga-leaving-20000-

backers-without-kickstarter-reward/ (Accessed June 17, 2021)

[4] D. Kliszowki, A. Vlasov. “Bluetooth Classic vs. Bluetooth Low Energy (BLE) on

Android – Hints and Implementation Steps,” Droid on Roids, 04/07/2020, [Online]

Available at: https://www.thedroidsonroids.com/blog/bluetooth-classic-vs-bluetooth-low-

energy-ble (Accessed March 30, 2022)

[5] “Bluetooth Wireless Technology,” Bluetooth. [Online] Available at:

https://www.bluetooth.com/learn-about-bluetooth/tech-overview/ (Accessed March 30,

2022)

[6] M. Woolley. “A Developer’s Guide to Bluetooth Technology,” Bluetooth, 08/10/2016,

[Online] Available at: https://www.bluetooth.com/blog/a-developers-guide-to-bluetooth/

(Accessed March 30, 2022)

[7] “Coleman 100 Quart Xtreme 5 Wheeled Cooler,” Amazon. [Online] Available at:

https://www.amazon.com/Coleman-100-Quart-Xtreme-Heavy-Duty-

Cooler/dp/B000G64FJK/ (Accessed July 5, 2021)

[8] “Raspberry Pi 4 Model B 2019 Quad Core 64-bit WiFi Bluetooth,” Amazon. [Online]

Available at: https://www.amazon.com/Raspberry-Model-2019-Quad-

Bluetooth/dp/B07TC2BK1X (Accessed July 5, 2021)

[9] “Pyle Marine Waterproof Speakers 6.5” - Low Profile Slim Style Wakeboard Tower and

Weather Resistant Outdoor Audio Stereo Sound System with LED Lights and 240 Watt

Power - 1 Pair in Black - PLMRS63BL,” Amazon. [Online] Available at:

https://www.amazon.com/Pyle-Marine-Waterproof-Speakers-6-5/dp/B078JBSPRJ

(Accessed July 5, 2021)

[10] “Eiechip 5PCS Waterproof Temperature Probe Thermometer DS18B20 1M with Heat

Resistance Thermal Cable,” Amazon. [Online] Available at:

https://www.amazon.com/gp/product/B07MB1J43W (Accessed March 30, 2022)

https://www.indiegogo.com/projects/infinite-world-s-most-versatile-smart-cooler#/
https://www.kickstarter.com/projects/ryangrepper/coolest-cooler-21st-century-cooler-thats-actually
https://www.kickstarter.com/projects/ryangrepper/coolest-cooler-21st-century-cooler-thats-actually
https://www.geekwire.com/2019/coolest-cooler-shuts-5-year-saga-leaving-20000-backers-without-kickstarter-reward/
https://www.geekwire.com/2019/coolest-cooler-shuts-5-year-saga-leaving-20000-backers-without-kickstarter-reward/
https://www.thedroidsonroids.com/blog/bluetooth-classic-vs-bluetooth-low-energy-ble
https://www.thedroidsonroids.com/blog/bluetooth-classic-vs-bluetooth-low-energy-ble
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/blog/a-developers-guide-to-bluetooth/
https://www.amazon.com/Coleman-100-Quart-Xtreme-Heavy-Duty-Cooler/dp/B000G64FJK/
https://www.amazon.com/Coleman-100-Quart-Xtreme-Heavy-Duty-Cooler/dp/B000G64FJK/
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X
https://www.amazon.com/Pyle-Marine-Waterproof-Speakers-6-5/dp/B078JBSPRJ
https://www.amazon.com/gp/product/B07MB1J43W

94

[11] “MCIGICM 30 Pcs Photoresistor Photo Light Sensitive Resistor, Light Dependent

Resistor 5 mm GM5539 5539,” Amazon. [Online] Available at:

https://www.amazon.com/MCIGICM-Photoresistor-Sensitive-Resistor-

Dependent/dp/B07PF3CWW9 (Accessed July 5, 2021)

[12] “Upenten 1pc SG90 9g Micro Servo Motor for RC Robot, Helicopter, Drone, Car, Boat

Remote Control,” Amazon. [Online] Available at: https://www.amazon.com/Upenten-

Micro-Helicopter-Remote-Control/dp/B07KVJ84FS/ (Accessed March 30, 2022)

[13] “Servo Motor SG-90,” Components101, 09/18/2017. [Online] Available at:

https://components101.com/motors/servo-motor-basics-pinout-datasheet (Accessed

March 30, 2022)

[14] MIT Electric Vehicle Team. “A Guide to Understanding Battery Specifications,” MIT,

12/2008. [Online] Available at:

http://web.mit.edu/evt/summary_battery_specifications.pdf (Accessed June 21, 2021)

[15] “NOCO Genius10, 10-Amp Fully-Automatic Smart Charger, 6V and 12V Battery

Charger, Battery Maintainer, Trickle Charger, and Battery Desulfator with Temperature

Compensation,” Amazon. [Online] Available at: https://www.amazon.com/NOCO-

GENIUS10-Fully-Automatic-Temperature-Compensation/dp/B07W3QT226 (Accessed

July 5, 2021)

[16] “ECO-WORTHY 10W 12V Off Grid Small Solar Panel Kit - Waterproof 10 Watt Solar

Panel with Charge Controller and Battery Clips Adapter,” Amazon. [Online] Available at:

https://www.amazon.com/ECO-WORTHY-Polycrystalline-System-Controller-

Battery/dp/B00PFG56ZS (Accessed July 5, 2021)

[17] “12V 20Ah Deep Cycle LiFePO4 Battery, 2000 Cycles Miady LFP16AH Rechargeable

Battery, Maintenance-Free Battery for Golf Cart, Boat, Solar System, UPS and More,”

Amazon. [Online] Available at: https://www.amazon.com/LiFePO4-Battery-Miady-

Rechargeable-Maintenance-Free/dp/B089VXSBC6/ (Accessed July 5, 2021)

[18] “BN-880 GPS Module U8 with Flash HMC5883 Compass + GPS Active Antenna

Support GPS Glonass Beidou Car Navigation for Arduino Raspberry Pi Aircraft Pixhawk

APM Flight Controller Geekstory,” Amazon. [Online] Available at:

https://www.amazon.com/Geekstory-Navigation-Raspberry-Aircraft-

Controller/dp/B078Y6323W/ (Accessed July 5, 2021)

[19] “DAMAVO YM1218 USB C & USB A Dual Port Car Charger Socket Power Outlet

Adapter Type C USB Car Charger Socket Waterproof with Cap 12V/24V for Car, Boat,

Golf Cart, Bus, RV, Automotive Marine ATV Truck,” Amazon. [Online] Available at:

https://www.amazon.com/dp/B08DD4BH6G/?coliid=ID6SK5UNY8K9F&colid=2J10L2

RGHQ1NS&psc=1&ref_=lv_ov_lig_dp_it (Accessed July 5, 2021)

[20] “ALITOVE 16.4ft WS2812B Addressable Programmable Digital RGB LED Strip Light

30 LED/M 5m 150 Pixels Dream Color LED Flexible Strip Waterproof IP65 5VDC for

Home Bedroom Bar Décor Lighting,” Amazon. [Online] Available at:

https://www.amazon.com/dp/B07FVPN3PH (Accessed March 30, 2022)

https://www.amazon.com/MCIGICM-Photoresistor-Sensitive-Resistor-Dependent/dp/B07PF3CWW9
https://www.amazon.com/MCIGICM-Photoresistor-Sensitive-Resistor-Dependent/dp/B07PF3CWW9
https://www.amazon.com/Upenten-Micro-Helicopter-Remote-Control/dp/B07KVJ84FS/
https://www.amazon.com/Upenten-Micro-Helicopter-Remote-Control/dp/B07KVJ84FS/
https://components101.com/motors/servo-motor-basics-pinout-datasheet
http://web.mit.edu/evt/summary_battery_specifications.pdf
https://www.amazon.com/NOCO-GENIUS10-Fully-Automatic-Temperature-Compensation/dp/B07W3QT226
https://www.amazon.com/NOCO-GENIUS10-Fully-Automatic-Temperature-Compensation/dp/B07W3QT226
https://www.amazon.com/ECO-WORTHY-Polycrystalline-System-Controller-Battery/dp/B00PFG56ZS
https://www.amazon.com/ECO-WORTHY-Polycrystalline-System-Controller-Battery/dp/B00PFG56ZS
https://www.amazon.com/LiFePO4-Battery-Miady-Rechargeable-Maintenance-Free/dp/B089VXSBC6/
https://www.amazon.com/LiFePO4-Battery-Miady-Rechargeable-Maintenance-Free/dp/B089VXSBC6/
https://www.amazon.com/Geekstory-Navigation-Raspberry-Aircraft-Controller/dp/B078Y6323W/
https://www.amazon.com/Geekstory-Navigation-Raspberry-Aircraft-Controller/dp/B078Y6323W/
https://www.amazon.com/dp/B08DD4BH6G/?coliid=ID6SK5UNY8K9F&colid=2J10L2RGHQ1NS&psc=1&ref_=lv_ov_lig_dp_it
https://www.amazon.com/dp/B08DD4BH6G/?coliid=ID6SK5UNY8K9F&colid=2J10L2RGHQ1NS&psc=1&ref_=lv_ov_lig_dp_it
https://www.amazon.com/dp/B07FVPN3PH

95

[21] “RC522 RFID Module,” Components101, 06/12/2019. [Online] Available at:

https://components101.com/wireless/rc522-rfid-module (Accessed March 30, 2022)

[22] “HiLetgo 3pcs RFID Kit – Mifare RC522 RF IC Card Sensor Module + S50 Blank Card

+ Key Ring for Arduino Raspberry Pi,” Amazon. [Online] Available at:

https://www.amazon.com/dp/B07VLDSYRW (Accessed March 30, 2022)

[23] “DC Converter with Battery Clip 12V 24V to 5V 8A USB Power Adapter Buck

Regulator Charger, 4 Ports Automatically Identify Shunt Charging, Suitable for iPhone

Android Samsung Galaxy S10 S9 Plus,” Amazon. [Online] Available at:

https://www.amazon.com/gp/product/B08MCZNYZN (Accessed March 30, 2022)

[24] “Buck Converter 12V to 5V, DROK 5A USB Voltage Regulator DC 9-36V Step Down to

DC 5V-5.3V 5.2V 3.5-6A Volt Transformer Power Supply Module for Phone Fast

Charging,” Amazon. [Online] Available at:

https://www.amazon.com/gp/product/B01NALDSJ0 (Accessed March 30, 2022)

[25] “BOJACK FQP30N06 32A 60V MOSFET Transistors FQP30N06L 32 Amp 60 Volt N-

Channel Power MOSFET TO-220AB (Pack of 10 Pcs),” Amazon. [Online] Available at:

https://www.amazon.com/gp/product/B08B8WRQP1 (Accessed March 30, 2022)

[26] “Universal Qi Wireless Charging Transmitter,” Adafruit. [Online] Available at:

https://www.adafruit.com/product/2162?gclid=Cj0KCQjw24qHBhCnARIsAPbdtlIAUh2i

bQHBZja9W_nasyJGfjjIFm_Lz3AFodz734EUntLDn1SxIU4aApN7EALw_wcB

(Accessed July 5, 2021)

[27] “SunFounder Raspberry Pi 4 Display Touchscreen 7 Inch HDMI 1024x600 USB IPS

LCD Screen Display Monitor for Raspberry Pi 400 4 3 Model B, 2 Model B, and 1 Model

B+, Windows Capacitive Touch Screen,” Amazon. [Online] Available at:

https://www.amazon.com/SunFounder-Raspberry-Touchscreen-1024%C3%97600-

Capacitive/dp/B07Y889J3X (Accessed July 5, 2021)

[28] “2Sets Magnetic Reed Switch Normally Open Closed NC NO Door Alarm Window

Security/Magnetic Door Switch/Magnetic Contact Switch/Reed Switch for GPS, Alarm

or Other Device, DC 5V 12V 24V Light,” Amazon. [Online] Available at:

https://www.amazon.com/gp/product/B0735BP1K4 (Accessed March 30, 2022)

[29] J. Anderson. “An Intro to Threading in Python,” Real Python. [Online] Available at:

https://realpython.com/intro-to-python-threading/ (Accessed March 30, 2022)

[30] “IEEE Code of Ethics,” IEEE. [Online] Available at:

https://www.ieee.org/about/corporate/governance/p7-8.html (Accessed July 5, 2021)

[31] B. Conghalie. “What To Do If You Get Lost In The Woods,” MyOpenCountry,

03/17/2021. [Online] Available at: https://www.myopencountry.com/lost-woods/

(Accessed at June 25, 2021)

https://components101.com/wireless/rc522-rfid-module
https://www.amazon.com/dp/B07VLDSYRW
https://www.amazon.com/gp/product/B08MCZNYZN
https://www.amazon.com/gp/product/B01NALDSJ0
https://www.amazon.com/gp/product/B08B8WRQP1
https://www.adafruit.com/product/2162?gclid=Cj0KCQjw24qHBhCnARIsAPbdtlIAUh2ibQHBZja9W_nasyJGfjjIFm_Lz3AFodz734EUntLDn1SxIU4aApN7EALw_wcB
https://www.adafruit.com/product/2162?gclid=Cj0KCQjw24qHBhCnARIsAPbdtlIAUh2ibQHBZja9W_nasyJGfjjIFm_Lz3AFodz734EUntLDn1SxIU4aApN7EALw_wcB
https://www.amazon.com/SunFounder-Raspberry-Touchscreen-1024%C3%97600-Capacitive/dp/B07Y889J3X
https://www.amazon.com/SunFounder-Raspberry-Touchscreen-1024%C3%97600-Capacitive/dp/B07Y889J3X
https://www.amazon.com/gp/product/B0735BP1K4
https://realpython.com/intro-to-python-threading/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.myopencountry.com/lost-woods/

96

Appendix A

Equations

Celsius to Fahrenheit Equation ℉ = ℃ ∙

9

5
+ 32 (2.1)

Power Equation 𝑃 = 𝑉 ∙ 𝐼 (2.2)

97

Appendix B

Smart Cooler Survey

Question 1: What features would you be most excited about?

Question 2: What features would you like in a smart cooler?

Summary

This survey was posted online to get feedback on the proposed features, as well as

additional features that would like to be added and where the Smart Cooler would be used.

The survey was kept short to encourage more responses.

98

Question 3: Where would you use the cooler most often?

99

Appendix C

Smart Cooler Survey Results

Timestamp

What feature
would you be
most excited to
have? What features would you like in a smart cooler?

Where would
you use the
cooler most
often?

6/5/2021
15:22:25

Bluetooth
Speakers The ability to stay cold for a really long time Beach

6/5/2021
15:45:24

Temperature
Regulation

Separate small freezer compartment(in
conjunction with temperature regulation) Beach

6/5/2021
15:45:49

Bluetooth
Speakers App support Beach

6/5/2021
16:04:03

Temperature
Regulation

what is a
cooler?

6/5/2021
16:12:27

Temperature
Regulation

The most important features for me when buying a
smart cooler would be a long-lasting battery and a
way to regulate/monitor the temperature. It would
also need other basic features like being
waterproof and having adequate storage room. Camping

6/5/2021
16:42:19

Wireless
Charging Camping

6/5/2021
17:02:02

Temperature
Regulation

Lightweight, easily mobilised, good temperature
regulation, reasonably priced, low maintenance Camping

6/5/2021
17:11:24

Temperature
Regulation

Probably most useful would be ability to control
temperature inside cooler from an app and check
what's inside the cooler Beach

6/5/2021
17:34:01

Temperature
Regulation Cooling

6/5/2021
17:43:40 Other None at all Beach

6/5/2021
17:50:42

Bluetooth
Speakers Camping

6/5/2021
17:54:37

Temperature
Regulation Camping

6/5/2021
18:04:12

Temperature
Regulation Charging would also be nice Beach

6/5/2021
18:10:22

Temperature
Regulation

wheels that work well on multiple types of
surfaces, for example asphalt and sand picnic

6/5/2021
18:30:02

Wireless
Charging Durable Beach

6/5/2021
18:39:00

Temperature
Regulation

less bulky, when i have to pack up my cooler and
take it out for work it's a giant pain something
slimmer that fits better in a laptop bag Work

6/5/2021
18:39:46

Temperature
Regulation Price Camping

100

6/5/2021
19:13:25

Temperature
Regulation

Temp monitoring through app. Alarm if it drops
under a programmable temp. Removable freezer
blocks that can create dividers, shelves, and can
intigrate into the lid to have cold come down from
top. Camping

6/5/2021
19:16:47

Temperature
Regulation Beach

6/5/2021
19:19:12

Temperature
Regulation maintain different temperatures for different items Work

6/5/2021
19:46:37

Temperature
Regulation On screen thermometer. Work

6/5/2021
20:24:01

Wireless
Charging Camping

6/5/2021
20:37:51

Temperature
Regulation

I want it to be as waterproof and sandproof as
possible, sturdy enough to sit on, spacious enough
for all the beers I'm going to drink, bluetooth
speakers would be nice, solar chargeable with
attachable panel, plug in capability, but it's not
necessary to have it plugged in all the time to keep
things cool, lightweight for carrying, made of
recycled materials if possible, heck, maybe even a
cute little screen that you can play games on to
occupy the kids in the back seat. Camping

6/5/2021
20:39:52

Temperature
Regulation Camping

6/5/2021
20:44:57 keep my drinks cold. don't leak house party

6/5/2021
20:46:43

Temperature
Regulation car

6/5/2021
21:05:22

Temperature
Regulation Beach

6/5/2021
21:11:33

Temperature
Regulation

Intelligent temperature control; swappable inserts
for different types of items like holding drinks
upright or shelves for more varied items Work

6/5/2021
21:20:42 Monitor Camping

6/5/2021
21:31:42

Temperature
Regulation Beach

6/5/2021
23:47:06

Temperature
Regulation

Temperature sensor, readout that gives a warning
and timestamp of when the cooler has exceeded
the allowable internal temp (so you know when to
buy more ice or if foods are safe to eat while
camping)

Grocery
shopping to
transport
frozen goods

6/6/2021
1:41:29

Temperature
Regulation

Thermometer reading of the inside temperature.
Perhaps even a way to set the cooler to a specific
temperature.
GPS tracking and a way to contact emergency
services. In the event that something goes wrong
while camping and for some reason the people
camping do not have access to their phones or
any other emergency device. Perhaps make it
animal-proof so that animals can't easily get inside
and maybe a way to repel wild animals.

Outdoor work
and activities

6/6/2021
1:52:29

Temperature
Regulation Travel

101

6/6/2021
2:44:40

Wireless
Charging Notification when ice is melted On a boat

6/6/2021
3:38:19

Temperature
Regulation Beach

6/6/2021
7:35:28

Temperature
Regulation Digital temp controls and easy portability

Road trips and
days at the
park

6/6/2021
14:46:04

Temperature
Regulation Camping

6/6/2021
19:04:56

Temperature
Regulation Temperature regulation, wheels, cup holder Beach

6/6/2021
22:12:36

Temperature
Regulation

An app or some thing that lets you control the
temperature. Also cool LED lights inside of it Beach

6/6/2021
22:26:29

Bluetooth
Speakers Bluetooth speaker & wireless charging

Everywhere:
home, picnic,
etc.

6/6/2021
22:31:04

Temperature
Regulation Beach

6/6/2021
23:44:57

Temperature
Regulation Wireless charging and Bluetooth speakers

Family
gatherings

6/7/2021
9:27:46

Temperature
Regulation Monitor for Perishable items Camping

6/8/2021
0:17:12

Bluetooth
Speakers Beach

6/8/2021
15:54:14

Bluetooth
Speakers Mobility, BT, water proof Beach

6/8/2021
17:04:15

Bluetooth
Speakers Flashlight Camping

6/9/2021
17:02:10 Other

Must cost less and use less power then non-smart
cooler. Must work without additional
app/smartphone/internet

6/30/2021
8:31:26

Temperature
Regulation

Keeping track of the optimum temperature for the
drinks. Like if we put stuff in it, if it can tell when
drinks are cooled down to its most chill
temperature to enjoy. Beach

102

Appendix D

Flowchart

103

104

Appendix E

Raspberry Pi Software Code

Reuben_app_LED.py is main file program.

#!/usr/bin/env python3

GPS

First, to get GPS working, open terminal and run

sudo systemctl stop gpsd.socket

sudo gpsd /dev/serial0 -F /var/run/gpsd.sock

TO RUN LEDS, RUN PYTHON SCRIPT IN 'SUDO PYTHON3 [SCRIPTNAME]'

#sudo python3 /home/pi/Documents/BluetoothExample/espresso-ble-

master/Reuben_app_LED.py

import logging

import dbus

import dbus.exceptions

import dbus.mainloop.glib

import dbus.service

import threading

import time

import RPi.GPIO as GPIO

#import Adafruit_DHT

from gps import *

from rpi_ws281x import PixelStrip, Color

import argparse

from mfrc522 import SimpleMFRC522

from gpiozero import DigitalOutputDevice, MCP3008, Button

from guizero import App, PushButton, Box, Text, Picture

from ble import (

 Advertisement,

 Characteristic,

105

 Service,

 Application,

 find_adapter,

 Descriptor,

 Agent,

)

import struct

import requests

import array

from enum import Enum

import base64

import os

import sys

from subprocess import call

MainLoop = None

try:

 from gi.repository import GLib

 MainLoop = GLib.MainLoop

except ImportError:

 import gobject as GObject

 MainLoop = GObject.MainLoop

logger = logging.getLogger(__name__)

logger.setLevel(logging.DEBUG)

logHandler = logging.StreamHandler()

filelogHandler = logging.FileHandler("logs.log")

formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s -

%(message)s")

logHandler.setFormatter(formatter)

filelogHandler.setFormatter(formatter)

logger.addHandler(filelogHandler)

logger.addHandler(logHandler)

#VivaldiBaseUrl = "XXXXXXXXXXXX"

mainloop = None

BLUEZ_SERVICE_NAME = "org.bluez"

GATT_MANAGER_IFACE = "org.bluez.GattManager1"

LE_ADVERTISEMENT_IFACE = "org.bluez.LEAdvertisement1"

LE_ADVERTISING_MANAGER_IFACE = "org.bluez.LEAdvertisingManager1"

#DHT_SENSOR = Adafruit_DHT.DHT22

106

DHT1_PIN = 4

DHT2_PIN = 17

On Cooler

TEMP_ONE_SENSOR_ADDRESS = "28-000000030f3a"

TEMP_TWO_SENSOR_ADDRESS = "28-000000039c16"

On Spare Pi

#TEMP_ONE_SENSOR_ADDRESS = "28-000000037e68"

#TEMP_TWO_SENSOR_ADDRESS = "28-000000031c3b"

MAGNET_PIN = 0

magnet_sensor = Button(MAGNET_PIN)

light_sensor_input = MCP3008(channel=0, device=1)

battery_level_input = MCP3008(channel=1, device=1)

reader = SimpleMFRC522()

#CS1_PIN = 7

#CS2_PIN = 8

#chip_select1 = DigitalOutputDevice(CS1_PIN)

LED strip configuration:

LED_COUNT = 68 # Number of LED pixels.

LED_PIN = 18 # GPIO pin connected to the pixels (18 uses PWM!).

LED_PIN = 10 # GPIO pin connected to the pixels (10 uses SPI /dev/spidev0.0).

LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz)

LED_DMA = 10 # DMA channel to use for generating signal (try 10)

LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest

LED_INVERT = False # True to invert the signal (when using NPN transistor level

shift)

LED_CHANNEL = 0 # set to '1' for GPIOs 13, 19, 41, 45 or 53

Global Variables

LED1State = 'OFF'

LED2State = 'OFF'

LED3State = 'OFF'

LED4State = 'OFF'

temp1 = 0

temp2 = 0

latlng = ''

LED8State = 'AUTO'

LED9State = 'RED'

LED10State = 'SOLID'

LED11State = 'AUTO'

LED12State = 'CELSIUS'

batteryLevel = 0.0

LEDClearState = 'ON'

107

LockServoState = 'OFF'

ServoComplete = False

profile = 'PROFILE_ONE'

iceSelected = 'ICE_ONE'

iceOneEnabled = False

iceTwoEnabled = False

iceOneNotification = 'OFF'

iceTwoNotification = 'OFF'

LED14State = 'OFF'

LED15State = 'OFF'

toggleSettings = True

SERVO

#Set GPIO numbering mode

#GPIO.setmode(GPIO.BCM)

#Set pin 13 GPIO 27 as an output, and set servo 1 as pin 13 as PWM

GPIO.setup(27,GPIO.OUT)

servo1 = GPIO.PWM(27,50) #Note 13 is pin, 50 = 50kHz

'''

#start PWM running, but with value of 0 (pulse off)

servo1.start(0)

print("Waiting 2 seconds")

time.sleep(2)

#Let's move teh servo

print("Rotating 180 deg in 10 steps")

#Define variable duty

duty = 2

#Loop for duty values from 2 to 12 (0 to 180 deg)

while duty <= 12:

 servo1.ChangeDutyCycle(duty)

 time.sleep(1)

 duty = duty + 1

#Wait for a couple seconds

time.sleep(2)

#Turn back to 90 deg

print("Turning back to 90 deg for 2 seconds")

servo1.ChangeDutyCycle(7)

time.sleep(2)

#Turn back to 0 deg

print("Turning back to 0 deg")

servo1.ChangeDutyCycle(2)

108

time.sleep(0.5)

servo1.ChangeDutyCycle(0)

#Clean things up at the end

servo1.stop()

#GPIO.cleanup()

print("Goodbye")

'''

pin1 = DigitalOutputDevice(20)

pin2 = DigitalOutputDevice(21)

pin3 = DigitalOutputDevice(16)

pin4 = DigitalOutputDevice(6)

#pin5 = DigitalOutputDevice(6)

#pin6 = DigitalOutputDevice(13)

def startLED1():

 global LED1State

 LED1State = "ON"

 logger.debug("Running Start LED")

 start_button1.disable()

 logger.debug("Start button disable")

 stop_button1.enable()

 logger.debug("Start button enable")

 pin1.on()

def stopLED1():

 global LED1State

 LED1State = "OFF"

 logger.debug("Running Stop LED")

 start_button1.enable()

 stop_button1.disable()

 pin1.off()

def startLED2():

 global LED2State

 LED2State = "ON"

 logger.debug("Running Start LED")

 start_button2.disable()

 logger.debug("Start button disable")

 stop_button2.enable()

 logger.debug("Start button enable")

 runServo0()

 #pin2.on()

def stopLED2():

 global LED2State

 LED2State = "OFF"

 logger.debug("Running Stop LED")

 start_button2.enable()

109

 stop_button2.disable()

 runServo90()

 #pin2.off()

def startLED3():

 global LED3State

 global LockServoState

 global ServoComplete

 if(magnet_sensor.is_pressed):

 LED3State = "ON"

 logger.debug("Running Start LED")

 start_button3.disable()

 logger.debug("Start button disable")

 stop_button3.enable()

 logger.debug("Start button enable")

 runServo0()

 LockServoState = "ON"

 ServoComplete = True

 #pin3.on()

def stopLED3():

 global LED3State

 global LockServoState

 global ServoComplete

 LED3State = "OFF"

 logger.debug("Running Stop LED")

 start_button3.enable()

 stop_button3.disable()

 LockServoState = "OFF"

 runServo90()

 ServoComplete = False

 if LED11State is 'AUTO':

 time.sleep(3)

 #pin3.off()

def startLED4():

 global LED4State

 global LEDClearState

 LED4State = "ON"

 LEDClearState = "OFF"

 logger.debug("Running Start LED")

 start_button4.disable()

 logger.debug("Start button disable")

 stop_button4.enable()

 logger.debug("Start button enable")

 LEDStripColor()

110

 print('Test')

 #pin4.on()

def stopLED4():

 global LED4State

 global LEDClearState

 LED4State = "OFF"

 LEDClearState = "ON"

 logger.debug("Running Stop LED")

 start_button4.enable()

 stop_button4.disable()

 LEDStripColor()

 #pin4.off()

def goToSettings():

 global toggleSettings

 logger.debug("Settings Screen")

 if(toggleSettings):

 settingsButton.text = "Back"

 MainScreenBox.hide()

 SettingsTwoScreenBox.hide()

 IceScreenBox.hide()

 SettingsScreenBox.show()

 else:

 settingsButton.text = "Settings"

 SettingsScreenBox.hide()

 SettingsTwoScreenBox.hide()

 IceScreenBox.hide()

 MainScreenBox.show()

 toggleSettings = not toggleSettings

def goToSettingsTwo():

 SettingsScreenBox.hide()

 SettingsTwoScreenBox.show()

def goBackToSettings():

 SettingsTwoScreenBox.hide()

 SettingsScreenBox.show()

def powerOff():

 saveSettings('/home/pi/Documents/BluetoothExample/espresso-ble-

master/savesettings')

 call("sudo shutdown -h now", shell=True)

def autoLED5():

 global LED8State

 LED8State = "AUTO"

 logger.debug("Set LED to AUTO")

 auto_button1.disable()

111

 manual_button1.enable()

def manualLED5():

 global LED8State

 LED8State = "MANUAL"

 logger.debug("Set LED to MANUAL")

 manual_button1.disable()

 auto_button1.enable()

def redLED6():

 global LED9State

 LED9State = "RED"

 logger.debug("Set color to RED")

 red_button.disable()

 blue_button.enable()

 white_button.enable()

 LEDStripColor()

 #rainbow_button1.enable()

def blueLED6():

 global LED9State

 LED9State = "BLUE"

 logger.debug("Set color to BLUE")

 red_button.enable()

 blue_button.disable()

 white_button.enable()

 LEDStripColor()

 #rainbow_button1.enable()

def whiteLED6():

 global LED9State

 LED9State = "WHITE"

 logger.debug("Set color to WHITE")

 red_button.enable()

 blue_button.enable()

 white_button.disable()

 LEDStripColor()

 #rainbow_button1.enable()

'''

def rainbowLED6():

 global LED9State

 LED9State = "RAINBOW"

 logger.debug("Set color to RAINBOW")

 red_button.enable()

 blue_button.enable()

 white_button.enable()

 rainbow_button1.disable()

'''

112

def solidLED7():

 global LED10State

 LED10State = "SOLID"

 logger.debug("Set LED to SOLID")

 solid_button.disable()

 #pulse_button.enable()

 rainbow_button2.enable()

 if LED9State is 'RED':

 red_button.disable()

 blue_button.enable()

 white_button.enable()

 elif LED9State is 'BLUE':

 red_button.enable()

 blue_button.disable()

 white_button.enable()

 else:

 red_button.enable()

 blue_button.enable()

 white_button.disable()

 LEDStripColor()

def rainbowLED7():

 global LED10State

 LED10State = "RAINBOW"

 logger.debug("Set LED to RAINBOW")

 solid_button.enable()

 #pulse_button.enable()

 rainbow_button2.disable()

 red_button.disable()

 blue_button.disable()

 white_button.disable()

 LEDStripColor()

def autoLED8():

 global LED11State

 LED11State = "AUTO"

 logger.debug("Set lock to AUTO")

 auto_button2.disable()

 manual_button2.enable()

def manualLED8():

 global LED11State

 LED11State = "MANUAL"

 logger.debug("Set lock to MANUAL")

 auto_button2.enable()

 manual_button2.disable()

def celsiusLED9():

 global LED12State

 LED12State = "CELSIUS"

113

 logger.debug("Set temp to CELSIUS")

 celsius_button.disable()

 fahrenheit_button.enable()

def fahrenheitLED9():

 global LED12State

 LED12State = "FAHRENHEIT"

 logger.debug("Set temp to FAHRENHEIT")

 celsius_button.enable()

 fahrenheit_button.disable()

def profile1LED10():

 global profile

 profile = "PROFILE_ONE"

 profile1_button.disable()

 profile2_button.enable()

def profile2LED10():

 global profile

 profile = "PROFILE_TWO"

 profile2_button.disable()

 profile1_button.enable()

def saveSettings(filename):

 with open(filename, 'w') as f:

 s = f"""SPEAKER={LED1State}

GPS={LED2State}

LOCK={LED3State}

LED={LED4State}

TEMP1={temp1}

TEMP2={temp2}

LATLNG={latlng}

LEDMODE={LED8State}

LEDCOLOR={LED9State}

LEDEFFECT={LED10State}

LOCKMODE={LED11State}

TEMPUNITS={LED12State}

BATTERY={batteryLevel}

LEDCLEAR={LEDClearState}

LOCKSERVOSTATE={LockServoState}

SERVOCOMPLETE={ServoComplete}"""

 f.write(s)

def profileSave():

 global profile

 if profile == "PROFILE_ONE":

 saveSettings('/home/pi/Documents/BluetoothExample/espresso-ble-

master/profileonesavesettings')

 else:

114

 saveSettings('/home/pi/Documents/BluetoothExample/espresso-ble-

master/profiletwosavesettings')

def profileSet():

 global profile

 if profile == 'PROFILE_ONE':

 with open('/home/pi/Documents/BluetoothExample/espresso-ble-

master/profileonesavesettings','r') as f:

 contents = f.read()

 setSettings(contents)

 else:

 with open('/home/pi/Documents/BluetoothExample/espresso-ble-

master/profiletwosavesettings','r') as f:

 contents = f.read()

 setSettings(contents)

def ice1LED11():

 global iceSelected

 iceSelected = 'ICE_ONE'

def ice2LED11():

 global iceSelected

 iceSelected = 'ICE_TWO'

def iceSet():

 global iceSelected

 global iceOneEnabled

 global iceTwoEnabled

 if iceSelected == 'ICE_ONE':

 iceOneEnabled = True

 ice1_button.bg = GREEN

 else:

 iceTwoEnabled = True

 ice2_button.bg = GREEN

def iceClear():

 global iceSelected

 global iceOneEnabled

 global iceTwoEnabled

 global iceOneNotification

 global iceTwoNotification

 if iceSelected == 'ICE_ONE':

 iceOneEnabled = False

 iceOneNotification = 'OFF'

 ice1_button.bg = RED

 else:

 iceTwoEnabled = False

 iceTwoNotification = 'OFF'

 ice2_button.bg = RED

115

def showIce(comp):

 global iceSelected

 global iceOneNotification

 global iceTwoNotification

 SettingsScreenBox.hide()

 SettingsTwoScreenBox.hide()

 MainScreenBox.hide()

 if comp == 'one':

 iceSelected = 'ICE_ONE'

 iceOneNotification = 'ON'

 else:

 iceSelected = 'ICE_TWO'

 iceTwoNotification = 'ON'

 text14.value = f"""Ice needs to be replaced in compartment {comp}"""

 IceScreenBox.show()

def closeIce():

 IceScreenBox.hide()

 SettingsScreenBox.hide()

 SettingsTwoScreenBox.hide()

 MainScreenBox.show()

 iceClear()

app = App(width=1000, height=600, layout="auto")

TURQUOISE = "#55D6C2"

SALMONPINK = "#F49097"

OFFWHITE = "#F2F5FF"

CHARLESTONGREEN = "#222725"

DARKELECTRICBLUE = "#546A7B"

JET = "#353535"

INDIGODYE = "#284B63"

GAINSBORO = "#D9D9D9"

titleBoxBgColor = INDIGODYE

titleTextColor = OFFWHITE

titleFontSize = 60

deviceBoxBgColor = GAINSBORO

deviceTextColor = CHARLESTONGREEN

deviceFontSize = 20

tempBoxBgColor = JET

tempTextColor = OFFWHITE

deviceBox1Width = 50

deviceBox2Width = 150

deviceVerticalSpace = 2

116

TitleBox = Box(app, width="fill", height=100)

TitleBox.bg = titleBoxBgColor

batteryIndicator = Picture(TitleBox,

image="/home/pi/Documents/BluetoothExample/espresso-ble-

master/NotCharging1.png", align="left")

powerButton = PushButton(TitleBox, command=powerOff, text="Power", width=5,

height="fill", align="left")

#batteryIndicator2 = Picture(TitleBox,

image="/home/pi/Documents/BluetoothExample/espresso-ble-

master/NotCharging1.png", align="left")

textTitle = Text(TitleBox, text="The Smart Cooler", width="fill", height="fill",

size=titleFontSize, font="Helvetica", color=titleTextColor, align="left")

settingsButton = PushButton(TitleBox, command=goToSettings, text="Settings",

width=5, height="fill", align="left")

MainScreenBox = Box(app, width="fill", height="fill")

LED1Box = Box(MainScreenBox, width="fill", height=80)

LED1Box.bg = deviceBoxBgColor

text1 = Text(LED1Box, text="Speakers", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

start_button1 = PushButton(LED1Box, command=startLED1, text="On", width=5,

align="left")

start_button1.text_size = deviceFontSize

start_button1.text_color = deviceTextColor

spaceBox1 = Box(LED1Box, width=deviceBox1Width, align="left")

stop_button1 = PushButton(LED1Box, command=stopLED1, text="Off", enabled=False,

width=5, align="left")

stop_button1.text_size = deviceFontSize

stop_button1.text_color = deviceTextColor

spaceBox2 = Box(LED1Box, width=deviceBox2Width, align="left")

verticalSpaceBox1 = Box(MainScreenBox, width="fill", height=deviceVerticalSpace)

verticalSpaceBox1.bg = deviceBoxBgColor

LED2Box = Box(MainScreenBox, width="fill", height=80)

LED2Box.bg = deviceBoxBgColor

text2 = Text(LED2Box, text="GPS", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

start_button2 = PushButton(LED2Box, command=startLED2, text="On", width=5,

align="left")

start_button2.text_size = deviceFontSize

spaceBox3 = Box(LED2Box, width=deviceBox1Width, align="left")

stop_button2 = PushButton(LED2Box, command=stopLED2, text="Off", enabled=False,

width=5, align="left")

stop_button2.text_size = deviceFontSize

spaceBox4 = Box(LED2Box, width=deviceBox2Width, align="left")

verticalSpaceBox2 = Box(MainScreenBox, width="fill", height=deviceVerticalSpace)

verticalSpaceBox2.bg = deviceBoxBgColor

117

LED3Box = Box(MainScreenBox, width="fill", height=80)

LED3Box.bg = deviceBoxBgColor

text3 = Text(LED3Box, text="Lock", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

start_button3 = PushButton(LED3Box, command=startLED3, text="On", width=5,

align="left")

start_button3.text_size = deviceFontSize

spaceBox5 = Box(LED3Box, width=deviceBox1Width, align="left")

stop_button3 = PushButton(LED3Box, command=stopLED3, text="Off", enabled=False,

width=5, align="left")

stop_button3.text_size = deviceFontSize

spaceBox6 = Box(LED3Box, width=deviceBox2Width, align="left")

verticalSpaceBox3 = Box(MainScreenBox, width="fill", height=deviceVerticalSpace)

verticalSpaceBox3.bg = deviceBoxBgColor

LED4Box = Box(MainScreenBox, width="fill", height=80)

LED4Box.bg = deviceBoxBgColor

text4 = Text(LED4Box, text="LED", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

start_button4 = PushButton(LED4Box, command=startLED4, text="On", width=5,

align="left")

start_button4.text_size = deviceFontSize

spaceBox7 = Box(LED4Box, width=deviceBox1Width, align="left")

stop_button4 = PushButton(LED4Box, command=stopLED4, text="Off", enabled=False,

width=5, align="left")

stop_button4.text_size = deviceFontSize

spaceBox8 = Box(LED4Box, width=deviceBox2Width, align="left")

TempTitleBox = Box(MainScreenBox, width="fill", height=70)

TempTitleBox.bg = tempBoxBgColor

textTempTitle = Text(TempTitleBox, text="Compartment Temperature", size=24,

color=tempTextColor, width="fill", align="bottom")

TempBox = Box(MainScreenBox, width="fill", height=150)

TempBox.bg = tempBoxBgColor

spaceBox = Box(TempBox, width=60, align="left")

textTemp1 = Text(TempBox, text="Temp 1:", size=30, width=10, color=tempTextColor,

align="left")

textTemp1Reading = Text(TempBox, text="00.0", size=30, width=10,

color=tempTextColor, align="left")

textTemp2 = Text(TempBox, text="Temp 2:", size=30, width=10, color=tempTextColor,

align="left")

textTemp2Reading = Text(TempBox, text="00.0", size=30, width=10,

color=tempTextColor, align="left")

SettingsScreenBox = Box(app, width="fill", height="fill")

SettingsScreenBox.hide()

118

deviceBoxWidth = 80

buttonFontSize = 12

buttonWidth = 12

deviceBox1Width = 20

deviceBox2Width = 500

deviceBox3Width = 335

deviceBox4Width = 170

LED5Box = Box(SettingsScreenBox, width="fill", height=deviceBoxWidth)

LED5Box.bg = deviceBoxBgColor

text5 = Text(LED5Box, text="LED", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

auto_button1 = PushButton(LED5Box, command=autoLED5, text="Auto",

enabled=False, width=buttonWidth, align="left")

auto_button1.text_size = buttonFontSize

auto_button1.text_color = deviceTextColor

spaceBox9 = Box(LED5Box, width=deviceBox1Width, align="left")

manual_button1 = PushButton(LED5Box, command=manualLED5, text="Manual",

width=buttonWidth, align="left")

manual_button1.text_size = buttonFontSize

manual_button1.text_color = deviceTextColor

spaceBox10 = Box(LED5Box, width=deviceBox2Width, align="left")

LED6Box = Box(SettingsScreenBox, width="fill", height=deviceBoxWidth)

LED6Box.bg = deviceBoxBgColor

text6 = Text(LED6Box, text="LED Color", width="fill", align="left",

size=deviceFontSize, color=deviceTextColor)

red_button = PushButton(LED6Box, command=redLED6, text="Red", enabled=False,

width=buttonWidth, align="left")

red_button.text_size = buttonFontSize

red_button.text_color = deviceTextColor

spaceBox11 = Box(LED6Box, width=deviceBox1Width, align="left")

blue_button = PushButton(LED6Box, command=blueLED6, text="Blue",

width=buttonWidth, align="left")

blue_button.text_size = buttonFontSize

blue_button.text_color = deviceTextColor

spaceBox12 = Box(LED6Box, width=deviceBox1Width, align="left")

white_button = PushButton(LED6Box, command=whiteLED6, text="White",

width=buttonWidth, align="left")

white_button.text_size = buttonFontSize

white_button.text_color = deviceTextColor

spaceBox13 = Box(LED6Box, width=deviceBox3Width, align="left")

'''

rainbow_button1 = PushButton(LED6Box, command=rainbowLED6, text="Rainbow",

width=buttonWidth, align="left")

rainbow_button1.text_size = buttonFontSize

rainbow_button1.text_color = deviceTextColor

spaceBox14 = Box(LED6Box, width=deviceBox4Width, align="left")

'''

119

LED7Box = Box(SettingsScreenBox, width="fill", height=deviceBoxWidth)

LED7Box.bg = deviceBoxBgColor

text7 = Text(LED7Box, text="LED Effect", width="fill", align="left",

size=deviceFontSize, color=deviceTextColor)

solid_button = PushButton(LED7Box, command=solidLED7, text="Solid",

enabled=False, width=buttonWidth, align="left")

solid_button.text_size = buttonFontSize

solid_button.text_color = deviceTextColor

spaceBox15 = Box(LED7Box, width=deviceBox1Width, align="left")

'''

pulse_button = PushButton(LED7Box, command=pulseLED7, text="Pulse",

width=buttonWidth, align="left")

pulse_button.text_size = buttonFontSize

pulse_button.text_color = deviceTextColor

spaceBox16 = Box(LED7Box, width=deviceBox1Width, align="left")

'''

rainbow_button2 = PushButton(LED7Box, command=rainbowLED7, text="Rainbow",

width=buttonWidth, align="left")

rainbow_button2.text_size = buttonFontSize

rainbow_button2.text_color = deviceTextColor

spaceBox17 = Box(LED7Box, width=deviceBox2Width, align="left")

LED8Box = Box(SettingsScreenBox, width="fill", height=deviceBoxWidth)

LED8Box.bg = deviceBoxBgColor

text8 = Text(LED8Box, text="Lock", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

auto_button2 = PushButton(LED8Box, command=autoLED8, text="Auto",

enabled=False, width=buttonWidth, align="left")

auto_button2.text_size = buttonFontSize

auto_button2.text_color = deviceTextColor

spaceBox18 = Box(LED8Box, width=deviceBox1Width, align="left")

manual_button2 = PushButton(LED8Box, command=manualLED8, text="Manual",

width=buttonWidth, align="left")

manual_button2.text_size = buttonFontSize

manual_button2.text_color = deviceTextColor

spaceBox19 = Box(LED8Box, width=deviceBox2Width, align="left")

LED10Box = Box(SettingsScreenBox, width="fill", height=deviceBoxWidth)

LED10Box.bg = deviceBoxBgColor

text10 = Text(LED10Box, text="More", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

settings_two_button = PushButton(LED10Box, command=goToSettingsTwo,

text="Next", width=buttonWidth, align="left")

settings_two_button.text_size = buttonFontSize

settings_two_button.text_color = deviceTextColor

spaceBox21 = Box(LED10Box, width=670, align="left")

SettingsTwoScreenBox = Box(app, width="fill", height="fill")

SettingsTwoScreenBox.hide()

120

LED9Box = Box(SettingsTwoScreenBox, width="fill", height=deviceBoxWidth)

LED9Box.bg = deviceBoxBgColor

text9 = Text(LED9Box, text="Temp", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

celsius_button = PushButton(LED9Box, command=celsiusLED9, text="Celsius",

enabled=False, width=buttonWidth, align="left")

celsius_button.text_size = buttonFontSize

celsius_button.text_color = deviceTextColor

spaceBox19 = Box(LED9Box, width=deviceBox1Width, align="left")

fahrenheit_button = PushButton(LED9Box, command=fahrenheitLED9,

text="Fahrenheit", width=buttonWidth, align="left")

fahrenheit_button.text_size = buttonFontSize

fahrenheit_button.text_color = deviceTextColor

spaceBox20 = Box(LED9Box, width=deviceBox2Width, align="left")

LED12Box = Box(SettingsTwoScreenBox, width="fill", height=deviceBoxWidth)

LED12Box.bg = deviceBoxBgColor

text12 = Text(LED12Box, text="Profiles", width="fill", align="left",

size=deviceFontSize, color=deviceTextColor)

profile1_button = PushButton(LED12Box, command=profile1LED10, text="Profile 1",

enabled=False, width=buttonWidth, align="left")

profile1_button.text_size = buttonFontSize

profile1_button.text_color = deviceTextColor

spaceBox23 = Box(LED12Box, width=deviceBox1Width, align="left")

profile2_button = PushButton(LED12Box, command=profile2LED10, text="Profile 2",

width=buttonWidth, align="left")

profile2_button.text_size = buttonFontSize

profile2_button.text_color = deviceTextColor

spaceBox24 = Box(LED12Box, width=deviceBox4Width, align="left")

psave_button = PushButton(LED12Box, command=profileSave, text="Save",

width=buttonWidth, align="left")

psave_button.text_size = buttonFontSize

psave_button.text_color = deviceTextColor

spaceBox25 = Box(LED12Box, width=deviceBox1Width, align="left")

pset_button = PushButton(LED12Box, command=profileSet, text="Set",

width=buttonWidth, align="left")

pset_button.text_size = buttonFontSize

pset_button.text_color = deviceTextColor

spaceBox26 = Box(LED12Box, width=deviceBox1Width, align="left")

WHITE = '#FFFFFF'

RED = '#FF0000'

GREEN = '#3CB371'

LED13Box = Box(SettingsTwoScreenBox, width="fill", height=deviceBoxWidth)

LED13Box.bg = deviceBoxBgColor

text13 = Text(LED13Box, text="Ice Monitor", width="fill", align="left",

size=deviceFontSize, color=deviceTextColor)

121

ice1_button = PushButton(LED13Box, command=ice1LED11, text="Comp 1",

width=buttonWidth, align="left")

ice1_button.text_size = buttonFontSize

ice1_button.text_color = WHITE

ice1_button.bg = RED

spaceBox27 = Box(LED13Box, width=deviceBox1Width, align="left")

ice2_button = PushButton(LED13Box, command=ice2LED11, text="Comp 2",

width=buttonWidth, align="left")

ice2_button.text_size = buttonFontSize

ice2_button.text_color = WHITE

ice2_button.bg = RED

spaceBox28 = Box(LED13Box, width=deviceBox4Width, align="left")

iceset_button = PushButton(LED13Box, command=iceSet, text="Set",

width=buttonWidth, align="left")

iceset_button.text_size = buttonFontSize

iceset_button.text_color = deviceTextColor

spaceBox29 = Box(LED13Box, width=deviceBox1Width, align="left")

iceclear_button = PushButton(LED13Box, command=iceClear, text="Clear",

width=buttonWidth, align="left")

iceclear_button.text_size = buttonFontSize

iceclear_button.text_color = deviceTextColor

spaceBox30 = Box(LED13Box, width=deviceBox1Width, align="left")

LED11Box = Box(SettingsTwoScreenBox, width="fill", height=deviceBoxWidth)

LED11Box.bg = deviceBoxBgColor

text11 = Text(LED11Box, text="Back", width="fill", align="left", size=deviceFontSize,

color=deviceTextColor)

settings_two_button = PushButton(LED11Box, command=goBackToSettings,

text="Back", width=buttonWidth, align="left")

settings_two_button.text_size = buttonFontSize

settings_two_button.text_color = deviceTextColor

spaceBox22 = Box(LED11Box, width=670, align="left")

IceScreenBox = Box(app, width="fill", height="fill")

IceScreenBox.hide()

spaceBox31 = Box(IceScreenBox, width=deviceBox1Width, height=100)

text14 = Text(IceScreenBox, text="Ice needs to be replaced", size=deviceFontSize,

color=deviceTextColor)

spaceBox32 = Box(IceScreenBox, width=deviceBox1Width, height=100)

ice_close_button = PushButton(IceScreenBox, command=closeIce, text="OK",

width=buttonWidth)

ice_close_button.text_size = buttonFontSize

ice_close_button.text_color = deviceTextColor

def runServo():

 global servo1

 global ServoComplete

122

 while True:

 #start PWM running, but with value of 0 (pulse off)

 #servo1.start(0)

 if LockServoState is 'ON':

 if ServoComplete is False:

 pin3.on()

 servo1.start(0)

 print("Waiting 2 seconds")

 servo1.ChangeDutyCycle(12)

 ServoComplete = True

 time.sleep(2)

 pin3.off()

 time.sleep(1)

 else:

 #Turn back to 0 deg

 if ServoComplete is False:

 pin3.on()

 print("Turning back to 0 deg")

 servo1.ChangeDutyCycle(2)

 time.sleep(0.5)

 servo1.ChangeDutyCycle(0)

 ServoComplete = True

 time.sleep(2)

 pin3.off()

 #Clean things up at the end

 #servo1.stop()

def runServo90():

 global servo1

 pin3.on()

 #start PWM running, but with value of 0 (pulse off)

 print("Turning to 90 deg")

 time.sleep(1)

 servo1.start(0)

 servo1.ChangeDutyCycle(6)

 time.sleep(1)

 pin3.off()

def runServo0():

 global servo1

 pin3.on()

 time.sleep(1)

 print("Turning back to 0 deg")

 servo1.ChangeDutyCycle(2)

 time.sleep(0.5)

123

 servo1.ChangeDutyCycle(0)

 time.sleep(1)

 pin3.off()

Define functions which animate LEDs in various ways.

def colorSolid(strip, color):

 for i in range(strip.numPixels()):

 strip.setPixelColor(i, color)

 strip.show()

def wheel(pos):

 """Generate rainbow colors across 0-255 positions."""

 if pos < 85:

 return Color(pos * 3, 255 - pos * 3, 0)

 elif pos < 170:

 pos -= 85

 return Color(255 - pos * 3, 0, pos * 3)

 else:

 pos -= 170

 return Color(0, pos * 3, 255 - pos * 3)

def rainbowSolid(strip, wait_ms=20, iterations=1):

 """Draw rainbow that fades across all pixels at once."""

 for j in range(256 * iterations):

 for i in range(strip.numPixels()):

 strip.setPixelColor(i, wheel((i + j) & 255))

 strip.show()

 #time.sleep(wait_ms / 1000.0)

def rainbow(strip, wait_ms=20, iterations=1):

 """Draw rainbow that fades across all pixels at once."""

 for j in range(256 * iterations):

 for i in range(strip.numPixels()):

 strip.setPixelColor(i, wheel((i + j) & 255))

 strip.show()

 time.sleep(wait_ms / 1000.0)

def LEDStripColor():

 global LED9State

 global LED10State

 global LEDClearState

 if LEDClearState is 'OFF':

 if LED10State is 'SOLID':

 if LED9State is "RED":

 LEDcolor = Color(255, 0, 0)

 elif LED9State is "BLUE":

 LEDcolor = Color(0, 0, 255)

124

 else:

 LEDcolor = Color(100, 100, 100)

 colorSolid(strip, LEDcolor)

 else:

 rainbowSolid(strip)

 else:

 LEDcolor = Color(0, 0, 0)

 colorSolid(strip,LEDcolor)

TO RUN LEDS, RUN PYTHON SCRIPT IN 'SUDO PYTHON3 [SCRIPTNAME]'

Create NeoPixel object with appropriate configuration.

strip = PixelStrip(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA,

LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL)

Intialize the library (must be called once before other functions).

strip.begin()

LEDcolor = Color(0, 0, 0)

colorSolid(strip,LEDcolor)

Main program logic follows:

def runLED():

 # Process arguments

 parser = argparse.ArgumentParser()

 parser.add_argument('-c', '--clear', action='store_true', help='clear the display on exit')

 args = parser.parse_args()

 # Create NeoPixel object with appropriate configuration.

 strip = PixelStrip(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA,

LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL)

 # Intialize the library (must be called once before other functions).

 strip.begin()

 print('Press Ctrl-C to quit.')

 if not args.clear:

 print('Use "-c" argument to clear LEDs on exit')

 try:

 while True:

 #rainbow(strip)

 if LEDClearState is "ON":

 LEDcolor = Color(0, 0, 0)

 colorSolid(strip,LEDcolor)

 else:

 if LED10State is "SOLID":

 if LED9State is "RED":

125

 LEDcolor = Color(255, 0, 0)

 elif LED9State is "BLUE":

 LEDcolor = Color(0, 0, 255)

 else:

 LEDcolor = Color(100, 100, 100)

 colorSolid(strip, LEDcolor)

 elif LED10State is "PULSE":

 if LED9State is "RED":

 colorWipe(strip, Color(255, 0, 0))

 colorWipe(strip, Color(100, 0, 0))

 elif LED9State is "BLUE":

 colorWipe(strip, Color(0, 0, 255))

 colorWipe(strip, Color(0, 0, 100))

 else:

 colorWipe(strip, Color(100, 100, 100))

 colorWipe(strip, Color(20, 20, 20))

 else:

 rainbow(strip)

 except KeyboardInterrupt:

 if args.clear:

 colorWipe(strip, Color(0, 0, 0), 10)

def getPositionData(gps):

 # First, open terimal and run

 # sudo systemctl stop gpsd.socket

 # sudo gpsd /dev/serial0 -F /var/run/gpsd.sock

 global latlng

 nx = gpsd.next()

 # For a list of all supported classes and fields refer to:

 # https://gpsd.gitlab.io/gpsd/gpsd_json.html

 print("GPS data called")

 if nx['class'] == 'TPV':

 latitude = getattr(nx,'lat', "Unknown")

 longitude = getattr(nx,'lon', "Unknown")

 if(latitude != "Unknown" or longitude != "Unknown"):

 lng = round(longitude, 6)

 lat = round(latitude, 6)

 latlng = (str(lat) + ',' + str(lng))

 print ("Your position: lon = " + str(longitude) + ", lat = " + str(latitude))

gpsd = gps(mode=WATCH_ENABLE|WATCH_NEWSTYLE)

126

def readTempSensor(address):

 '''

 Initial startup

 sudo nano /boot/config.txt

 Scroll to bottom and put

 dtoverlay=w1-gpio

 then save and reboot, then type

 ls -l /sys/bus/w1/devices/

 to see device addresses

 Example code to see data being read

 cat /sys/bus/w1/devices/28-000000037e68/w1_slave

 '''

 tempfile = open("/sys/bus/w1/devices/" + address + "/w1_slave")

 thetext = tempfile.read()

 tempfile.close()

 temptextsplittest = thetext.split("\n")

 if len(temptextsplittest) > 1:

 temptextsplit = thetext.split("\n")[1].split(" ")

 if (len(temptextsplit)>9):

 print("TEMP READ")

 tempdata = temptextsplit[9]

 temperature = float(tempdata[2:])

 temperature = temperature/1000

 return temperature

 else:

 print("TEMP NOT THERE")

 #quit()

 return 0

 else:

 print("TEMP NOT THERE")

 #quit()

 return 0

def convertCelsiusToFahrenheit(celsius):

 return (celsius * 9 / 5) + 32;

def setSettings(file):

 text = file.split('\n')

 print(text)

 for state in text:

 t = state.split('=')

 if(t[0] == 'SPEAKER'):

 if(t[1] == 'ON'):

 startLED1()

 else:

 stopLED1()

 elif(t[0] == 'GPS'):

 if(t[1] == 'ON'):

127

 startLED2()

 else:

 stopLED2()

 elif(t[0] == 'LOCK'):

 if(t[1] == 'ON'):

 startLED3()

 else:

 stopLED3()

 elif(t[0] == 'LED'):

 if(t[1] == 'ON'):

 startLED4()

 else:

 stopLED4()

 elif(t[0] == 'TEMP1'):

 temp1 = t[1]

 elif(t[0] == 'TEMP2'):

 temp2 = t[1]

 elif(t[0] == 'LATLNG'):

 latlng = t[1]

 elif(t[0] == 'LEDMODE'):

 if(t[1] == 'AUTO'):

 autoLED5()

 else:

 manualLED5()

 elif(t[0] == 'LEDCOLOR'):

 if(t[1] == 'RED'):

 redLED6()

 elif(t[1] == 'BLUE'):

 blueLED6()

 else:

 whiteLED6()

 elif(t[0] == 'LEDEFFECT'):

 if(t[1] == 'SOLID'):

 solidLED7()

 else:

 rainbowLED7()

 elif(t[0] == 'LOCKMODE'):

 if(t[1] == 'AUTO'):

 autoLED8()

 else:

 manualLED8()

 elif(t[0] == 'TEMPUNITS'):

 if(t[1] == 'CELSIUS'):

 celsiusLED9()

 else:

 fahrenheitLED9()

 elif(t[0] == 'BATTERY'):

 batteryLevel = t[1]

 elif(t[0] == 'LEDCLEAR'):

 LEDClearState = t[1]

128

 elif(t[0] == 'LOCKSERVOSTATE'):

 LockServoState = t[1]

 elif(t[0] == 'SERVOCOMPLETE'):

 ServoComplete = t[1]

Initialize variables

with open('/home/pi/Documents/BluetoothExample/espresso-ble-master/savesettings','r')

as f:

 contents = f.read()

 setSettings(contents)

def readAnalog():

 global temp1

 global temp2

 global batteryLevel

 global batteryIndicator

 global LEDClearState

 global LED4State

 global LED8State

 global LED11State

 global ServoComplete

 global LockServoState

 while True:

 light_reading = light_sensor_input.value

 voltage = light_reading * 3.3

 print("Light Sensor Reading={:.2f}\tVoltage={:.2f}".format(light_reading, voltage))

 if magnet_sensor.is_pressed:

 print("Magnet closed")

 start_button4.disable()

 stop_button4.disable()

 LEDClearState = 'ON'

 LEDStripColor()

 else:

 # Re-enable buttons if door open

 if LED4State is 'ON':

 startLED4()

 else:

 stopLED4()

 if LED8State is 'AUTO':

 if light_reading <= 0.18:

 LEDClearState = 'OFF'

 LEDStripColor()

 else:

 if LED4State is 'OFF':

129

 LEDClearState = 'ON'

 LEDStripColor()

 else:

 if LED4State is 'OFF':

 LEDClearState = 'ON'

 LEDStripColor()

 battery_level_reading = battery_level_input.value

 voltage = battery_level_reading * 3.3

 print("Battery Level Reading={:.2f}\tVoltage={:.2f}".format(battery_level_reading,

voltage))

 batteryLevel = battery_level_reading

 # Battery Level Indicator Logic

 if (batteryLevel <= 0.2):

 batteryIndicator.value = "/home/pi/Documents/BluetoothExample/espresso-ble-

master/Battery201.png"

 elif (batteryLevel > 0.2 and batteryLevel <= 0.4):

 batteryIndicator.value = "/home/pi/Documents/BluetoothExample/espresso-ble-

master/Battery401.png"

 elif (batteryLevel > 0.4 and batteryLevel <= 0.6):

 batteryIndicator.value = "/home/pi/Documents/BluetoothExample/espresso-ble-

master/Battery601.png"

 elif (batteryLevel > 0.6 and batteryLevel <= 0.8):

 batteryIndicator.value = "/home/pi/Documents/BluetoothExample/espresso-ble-

master/Battery801.png"

 elif (batteryLevel > 0.8):

 batteryIndicator.value = "/home/pi/Documents/BluetoothExample/espresso-ble-

master/Battery1001.png"

 else:

 batteryIndicator.value = "/home/pi/Documents/BluetoothExample/espresso-ble-

master/NotCharging1.png"

 temp1Celsius = readTempSensor(TEMP_ONE_SENSOR_ADDRESS)

 temp2Celsius = readTempSensor(TEMP_TWO_SENSOR_ADDRESS)

 temp1Fahrenheit = convertCelsiusToFahrenheit(temp1Celsius)

 temp2Fahrenheit = convertCelsiusToFahrenheit(temp2Celsius)

 if (LED12State == "CELSIUS"):

 temp1 = "{0:0.1f} C ".format(temp1Celsius)

 temp2 = "{0:0.1f} C ".format(temp2Celsius)

 textTemp1Reading.value = temp1

 textTemp2Reading.value = temp2

 else:

 temp1 = "{0:0.1f} F ".format(temp1Fahrenheit)

 temp2 = "{0:0.1f} F ".format(temp2Fahrenheit)

 textTemp1Reading.value = temp1

 textTemp2Reading.value = temp2

130

 print("Temp Sensor One: " + temp1)

 print("Temp Sensor Two: " + temp2)

 #print("Temp Sensor One: {0:0.2f}C".format(temp1))

 #print("Temp Sensor Two: {0:0.2f}C".format(temp2))

 if magnet_sensor.is_pressed:

 if LED3State is 'ON':

 start_button3.disable()

 stop_button3.enable()

 else:

 start_button3.enable()

 stop_button3.disable()

 print("Magnet closed")

 if LED11State is 'AUTO':

 if ServoComplete is False:

 if LockServoState is 'OFF':

 startLED3()

 ServoComplete = True

 else:

 start_button3.disable()

 stop_button3.disable()

 ServoComplete = False

 if LED2State is 'ON':

 getPositionData(gpsd)

 if temp1Celsius >= 30.0:

 if iceOneEnabled == True:

 iceSelected = 'ICE_ONE'

 showIce('one')

 if temp2Celsius >= 30.0:

 if iceTwoEnabled == True:

 iceSelected = 'ICE_TWO'

 showIce('two')

 print(profile)

 print(f"""Ice One {iceOneEnabled}""")

 print(f"""Ice One {iceOneNotification}""")

 print(f"""Ice Two {iceTwoEnabled}""")

 print(f"""Ice Two {iceTwoNotification}""")

 time.sleep(1.5)

def readRFID():

 global LockServoState

131

 while True:

 print("RFID read")

 id, text = reader.read()

 print("ID: %s\nText: %s" % (id,text))

 if(magnet_sensor.is_pressed):

 #runServo()

 if LockServoState is 'ON':

 #LockServoState = "OFF"

 #runServo0()

 stopLED3()

 else:

 #runServo90()

 #LockServoState = "ON"

 startLED3()

 else:

 #LockServoState = "OFF"

 #runServo0()

 stopLED3()

 time.sleep(5)

class InvalidArgsException(dbus.exceptions.DBusException):

 _dbus_error_name = "org.freedesktop.DBus.Error.InvalidArgs"

class NotSupportedException(dbus.exceptions.DBusException):

 _dbus_error_name = "org.bluez.Error.NotSupported"

class NotPermittedException(dbus.exceptions.DBusException):

 _dbus_error_name = "org.bluez.Error.NotPermitted"

class InvalidValueLengthException(dbus.exceptions.DBusException):

 _dbus_error_name = "org.bluez.Error.InvalidValueLength"

class FailedException(dbus.exceptions.DBusException):

 _dbus_error_name = "org.bluez.Error.Failed"

def register_app_cb():

 logger.info("GATT application registered")

def register_app_error_cb(error):

 logger.critical("Failed to register application: " + str(error))

 mainloop.quit()

132

class SmartCoolerService(Service):

 """

 Dummy test service that provides characteristics and descriptors that

 exercise various API functionality.

 """

 COOLER_SVC_UUID = "12634d89-d598-4874-8e86-7d042ee07ba7"

 def __init__(self, bus, index):

 Service.__init__(self, bus, index, self.COOLER_SVC_UUID, True)

 self.add_characteristic(LED1(bus, 0, self))

 self.add_characteristic(LED2(bus, 1, self))

 self.add_characteristic(LED3(bus, 2, self))

 self.add_characteristic(LED4(bus, 3, self))

 self.add_characteristic(LED5(bus, 4, self))

 self.add_characteristic(LED6(bus, 5, self))

 self.add_characteristic(LED7(bus, 6, self))

 self.add_characteristic(LED8(bus, 7, self))

 self.add_characteristic(LED9(bus, 8, self))

 self.add_characteristic(LED10(bus, 9, self))

 self.add_characteristic(LED11(bus, 10, self))

 self.add_characteristic(LED12(bus, 11, self))

 self.add_characteristic(LED13(bus, 12, self))

 self.add_characteristic(LED14(bus, 13, self))

 self.add_characteristic(LED15(bus, 14, self))

class LED1(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c14e"

 description = b"Speakers ON/OFF"

 global LED1State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(LED1State.encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Speakers Read: " + repr(self.value))

 test = bytes(LED1State.encode("utf-8"))

 self.value = test

 return self.value

133

 def WriteValue(self, value, options):

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 if decodedValue == "ON":

 logger.debug("Should be on")

 startLED1()

 else:

 logger.debug("Should be off")

 stopLED1()

 self.value = cmd

class LED2(Characteristic):

 uuid = "322e774f-c909-49c4-bd7b-48a4003a967f"

 description = b"LED Lights ON/OFF"

 global LED2State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(LED2State.encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("LED Lights Read: " + repr(self.value))

 test = bytes(LED2State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 if decodedValue == "ON":

 logger.debug("Should be on")

 startLED2()

 else:

 logger.debug("Should be off")

 stopLED2()

134

 self.value = cmd

class LED3(Characteristic):

 uuid = "9c7dbce8-de5f-4168-89dd-74f04f4e5842"

 description = b"Lock ON/OFF"

 global LED3State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(LED3State.encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Lock Read: " + repr(self.value))

 test = bytes(LED3State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 if decodedValue == "ON":

 logger.debug("Should be on")

 startLED3()

 else:

 logger.debug("Should be off")

 stopLED3()

 self.value = cmd

class LED4(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c144"

 description = b"GPS ON/OFF"

 global LED4State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

135

)

 test = bytes(LED4State.encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("GPS Read: " + repr(self.value))

 test = bytes(LED4State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 if decodedValue == "ON":

 logger.debug("Should be on")

 startLED4()

 else:

 logger.debug("Should be off")

 stopLED4()

 self.value = cmd

class LED5(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c145"

 description = b"Temp 1 Unit Reading"

 global temp1

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes("0".encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Temp 1 Read: " + repr(self.value))

 print(temp1)

 test = bytes(str(temp1).encode("utf-8"))

 self.value = test

136

 return self.value

class LED6(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c141"

 description = b"Temp 2 Unit Reading"

 global temp2

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes("0".encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Temp 2 Read: " + repr(self.value))

 print(temp2)

 test = bytes(str(temp2).encode("utf-8"))

 self.value = test

 return self.value

class LED7(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c142"

 description = b"GPS Location Reading"

 global latlng

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes("coords".encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Latlng Read: " + repr(self.value))

 print(latlng)

 test = bytes(str(latlng).encode("utf-8"))

 self.value = test

 return self.value

137

class LED8(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c150"

 description = b"LED Manual/Auto"

 global LED8State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(LED8State.encode("utf-8"))

 #test_base = base64.b64encode(test)

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("LED Selector Read: " + repr(self.value))

 test = bytes(LED8State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 global LED8State

 logger.debug("LED 8")

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 LED8State = decodedValue

 if decodedValue == "AUTO":

 logger.debug("Should be auto")

 autoLED5()

 else:

 logger.debug("Should be manual")

 manualLED5()

 self.value = cmd

class LED9(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c151"

 description = b"LED Color Selector"

138

 global LED9State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(LED9State.encode("utf-8"))

 #test_base = base64.b64encode(test)

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("LED Color Selector Read: " + repr(self.value))

 test = bytes(LED9State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 global LED9State

 logger.debug("LED 9")

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 LED9State = decodedValue

 if decodedValue == "RED":

 logger.debug("Should be red")

 redLED6()

 elif decodedValue == "BLUE":

 logger.debug("Should be blue")

 blueLED6()

 else:

 logger.debug("Should be white")

 whiteLED6()

 self.value = cmd

class LED10(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c152"

 description = b"LED Effect Selector"

 global LED10State

139

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(LED10State.encode("utf-8"))

 #test_base = base64.b64encode(test)

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("LED Effect Selector Read: " + repr(self.value))

 test = bytes(LED10State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 global LED10State

 logger.debug("LED 10")

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 LED10State = decodedValue

 if decodedValue == "SOLID":

 logger.debug("Should be solid")

 solidLED7()

 else:

 logger.debug("Should be rainbow")

 rainbowLED7()

 self.value = cmd

class LED11(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c153"

 description = b"Lock Manual/Auto"

 global LED11State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

140

 test = bytes(LED11State.encode("utf-8"))

 #test_base = base64.b64encode(test)

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Lock Selector Read: " + repr(self.value))

 test = bytes(LED11State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 global LED11State

 logger.debug("LED 11")

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 LED11State = decodedValue

 if decodedValue == "AUTO":

 logger.debug("Should be auto")

 autoLED8()

 else:

 logger.debug("Should be manual")

 manualLED8()

 self.value = cmd

class LED12(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c154"

 description = b"Temp Units Conversion Celsius/Fahrenheit"

 global LED12State

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(LED12State.encode("utf-8"))

 #test_base = base64.b64encode(test)

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

141

 def ReadValue(self, options):

 logger.debug("Temp Conversion Units Read: " + repr(self.value))

 test = bytes(LED12State.encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 global LED12State

 logger.debug("LED 12")

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 LED12State = decodedValue

 if decodedValue == "CELSIUS":

 logger.debug("Should be celsius")

 celsiusLED9()

 else:

 logger.debug("Should be fahrenheit")

 fahrenheitLED9()

 self.value = cmd

class LED13(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c155"

 description = b"Battery Level Reading"

 global batteryLevel

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes("0".encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("power Read: " + repr(self.value))

 print(batteryLevel)

 test = bytes(str(batteryLevel).encode("utf-8"))

 self.value = test

142

 return self.value

class LED14(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c156"

 description = b"Ice Compartment One Notification"

 global iceOneNotification

 global iceSelected

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(iceOneNotification.encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Ice One Notification Read: " + repr(self.value))

 print(iceOneNotification)

 test = bytes(str(iceOneNotification).encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 global iceOneNotification

 global iceSelected

 logger.debug("Ice One Notification")

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 iceOneNotification = decodedValue

 iceSelected = 'ICE_ONE'

 if decodedValue == "OFF":

 logger.debug("Ice One Notification Off")

 iceClear()

 self.value = cmd

class LED15(Characteristic):

 uuid = "4116f8d2-9f66-4f58-a53d-fc7440e7c157"

 description = b"Ice Compartment Two Notification"

143

 global iceTwoNotification

 global iceSelected

 def __init__(self, bus, index, service):

 Characteristic.__init__(

 self, bus, index, self.uuid, ["encrypt-read", "encrypt-write"], service,

)

 test = bytes(iceTwoNotification.encode("utf-8"))

 self.value = test

 self.add_descriptor(CharacteristicUserDescriptionDescriptor(bus, 1, self))

 def ReadValue(self, options):

 logger.debug("Ice Two Notification Read: " + repr(self.value))

 print(iceTwoNotification)

 test = bytes(str(iceTwoNotification).encode("utf-8"))

 self.value = test

 return self.value

 def WriteValue(self, value, options):

 global iceTwoNotification

 global iceSelected

 logger.debug("Ice Two Notification")

 logger.debug("power Write: " + repr(value))

 cmd = bytes(value)

 decodedValue = cmd.decode("utf-8")

 logger.debug("Value: " + decodedValue)

 iceTwoNotification = decodedValue

 iceSelected = 'ICE_TWO'

 if decodedValue == "OFF":

 logger.debug("Ice Two Notification Off")

 iceClear()

 self.value = cmd

class CharacteristicUserDescriptionDescriptor(Descriptor):

 """

 Writable CUD descriptor.

 """

 CUD_UUID = "2901"

 def __init__(

144

 self, bus, index, characteristic,

):

 self.value = array.array("B", characteristic.description)

 self.value = self.value.tolist()

 Descriptor.__init__(self, bus, index, self.CUD_UUID, ["read"], characteristic)

 def ReadValue(self, options):

 return self.value

 def WriteValue(self, value, options):

 if not self.writable:

 raise NotPermittedException()

 self.value = value

class SmartCoolerAdvertisement(Advertisement):

 def __init__(self, bus, index):

 Advertisement.__init__(self, bus, index, "peripheral")

 self.add_manufacturer_data(

 0xFFFF, [0x70, 0x74],

)

 self.add_service_uuid(SmartCoolerService.COOLER_SVC_UUID)

 self.add_local_name("The Smart Cooler")

 self.include_tx_power = True

def register_ad_cb():

 logger.info("Advertisement registered")

 #os.system("bluealsa-aplay 68:E7:C2:90:28:F0")

def register_ad_error_cb(error):

 logger.critical("Failed to register advertisement: " + str(error))

 mainloop.quit()

AGENT_PATH = "/com/punchthrough/agent"

def main():

 global mainloop

 dbus.mainloop.glib.DBusGMainLoop(set_as_default=True)

 # get the system bus

 bus = dbus.SystemBus()

 # get the ble controller

 adapter = find_adapter(bus)

145

 if not adapter:

 logger.critical("GattManager1 interface not found")

 return

 adapter_obj = bus.get_object(BLUEZ_SERVICE_NAME, adapter)

 adapter_props = dbus.Interface(adapter_obj, "org.freedesktop.DBus.Properties")

 # powered property on the controller to on

 adapter_props.Set("org.bluez.Adapter1", "Powered", dbus.Boolean(1))

 # Get manager objs

 service_manager = dbus.Interface(adapter_obj, GATT_MANAGER_IFACE)

 ad_manager = dbus.Interface(adapter_obj, LE_ADVERTISING_MANAGER_IFACE)

 advertisement = SmartCoolerAdvertisement(bus, 0)

 obj = bus.get_object(BLUEZ_SERVICE_NAME, "/org/bluez")

 agent = Agent(bus, AGENT_PATH)

 app = Application(bus)

 app.add_service(SmartCoolerService(bus, 2))

 mainloop = MainLoop()

 agent_manager = dbus.Interface(obj, "org.bluez.AgentManager1")

 agent_manager.RegisterAgent(AGENT_PATH, "NoInputNoOutput")

 ad_manager.RegisterAdvertisement(

 advertisement.get_path(),

 {},

 reply_handler=register_ad_cb,

 error_handler=register_ad_error_cb,

)

 logger.info("Registering GATT application...")

 service_manager.RegisterApplication(

 app.get_path(),

 {},

 reply_handler=register_app_cb,

 error_handler=[register_app_error_cb],

)

 agent_manager.RequestDefaultAgent(AGENT_PATH)

 print("Is looping?")

 #mainloop.run()

 t3 = threading.Thread(target=readAnalog)

146

 t3.start()

 t4 = threading.Thread(target=runLED)

 #t4.start()

 t5 = threading.Thread(target=readRFID)

 t5.start()

 t6 = threading.Thread(target=runServo)

 #t6.start()

 t2 = threading.Thread(target=mainloop.run)

 t2.start()

 '''

 e = threading.Event()

 t1 = threading.Thread(name='GUI Interface', target=startGUI, args=(e,))

 t1.start()

 e.set()

 '''

 # ad_manager.UnregisterAdvertisement(advertisement)

 # dbus.service.Object.remove_from_connection(advertisement)

if __name__ == "__main__":

 main()

app.display()

147

Appendix F

React Native Software Code

App.js is main program file.

/**

 * Sample React Native App

 * https://github.com/facebook/react-native

 *

 * @format

 * @flow strict-local

 */

import React, { useEffect, useState } from 'react';

import { BleManager, Device } from 'react-native-ble-plx';

import type {Node} from 'react';

import {

 SafeAreaView,

 ScrollView,

 StatusBar,

 StyleSheet,

 Text,

 useColorScheme,

 View,

 Button,

 Image,

 LogBox,

} from 'react-native';

import BluetoothDevices from './app/components/BluetoothDevices';

import {

 Colors,

 DebugInstructions,

 Header,

 LearnMoreLinks,

 ReloadInstructions,

} from 'react-native/Libraries/NewAppScreen';

LogBox.ignoreLogs(['new NativeEventEmitter']); // Ignore log notification by message

LogBox.ignoreAllLogs(); //Ignore all log notifications

let counter = 1;

const MainScreen = ({ screen, timerDone, retryScan, device }) => {

148

 const connectDevice = (device) => {

 console.log("Device connected. Device: " + device.id);

 };

 if (screen === 'main') {

 return (

 <View style={ styles.container }>

 <Image

 style={ styles.loading }

 source={ require('./app/static/loading.gif') }

 />

 {

 !timerDone ?

 <Text>Scanning...</Text>

 :

 <Button title="Retry Scan" onPress={ () => { retryScan() } }/>

 }

 {

 //<Button title="Start Scan" onPress={ () => { createSubscription() } } />

 }

 </View>

)

 } else if (screen === 'connected') {

 return (

 <View style={ styles.container }>

 <BluetoothDevices

 device={ device }

 onClick={ (prop) => { connectDevice(prop) } }

 />

 </View>

)

 } else if (screen === 'settings') {

 } else {

 return (

 <Text>Error</Text>

)

 }

};

const App = () => {

 const [devices, setDevices] = React.useState([]);

 const [timerDone, setTimerDone] = React.useState(false);

 const [test, setTest] = React.useState([]);

 // Old Raspberry Pi 4 Ram 4GB

149

 //const RASPBERRY_PI_DEVICE_MAC_ID = 'E4:5F:01:39:36:E6';

 //const RASPBERRY_PI_DEVICE_UUID = 'FD025826-984A-1CD2-64C3-

1E24A270CCAA';

 // Raspberry Pi 8GB Ram

 const RASPBERRY_PI_DEVICE_MAC_ID = 'DC:A6:32:EC:ED:75';

 const RASPBERRY_PI_DEVICE_UUID = '87B585D1-84C3-486A-8F3D-

77CF16F84F30';

 const DEVICE_NAME = 'The Smart Cooler';

 const manager = new BleManager();

 const createSubscription = () => {

 const subscription = manager.onStateChange((state) => {

 if (state === 'PoweredOn') {

 console.log('Powered On');

 let device_list = devices;

 let scan_complete = false;

 if (devices.length == 0)

 manager.startDeviceScan(null, null, (error, device) => {

 console.log('Scanning...');

 if (error) {

 // Handle error (scanning will be stopped automatically)

 console.log('Error: ' + error)

 return

 }

 if (device.id === RASPBERRY_PI_DEVICE_MAC_ID || device.id ===

RASPBERRY_PI_DEVICE_UUID || device.localName === DEVICE_NAME) {

 device_list = [...device_list, device];

 manager.stopDeviceScan();

 console.log("final");

 console.log(device_list);

 scan_complete = true;

 setDevices(device_list);

 }

 // console.log(device);

 console.log(device.name);

 console.log(device.localName);

 console.log(device.manufacturerData);

 });

150

 /*

 setTimeout(() => {

 if(!scan_complete) {

 console.log('Scan complete');

 manager.stopDeviceScan();

 //setTimerDone(true);

 }

 }, 5000);

 */

 /*

 setTimeout(() => {

 manager.stopDeviceScan();

 console.log("final");

 console.log(device_list);

 setDevices(device_list);

 }, 3000);

 */

 scanAndConnect();

 subscription.remove();

 }

 }, true)

 }

 const scanAndConnect = () => {

 // setDevices(devices => [...devices, device.id]);

 //setTest(counter);

 counter++;

 console.log(counter);

 };

 const stopScan = () => {

 console.log("Stop device scan.");

 manager.stopDeviceScan();

 };

 useEffect(() => {

 // Anything in here will be fired on component mount.

 console.log('Component mounted.');

 // const subscription = manager.onStateChange((state) => {

 // if (state === 'PoweredOn') {

 // scanAndConnect();

 // subscription.remove();

151

 // }

 // }, true);

 if (devices.length == 0) {

 createSubscription();

 }

 return () => {

 console.log("Component Unmount.");

 manager.destroy();

 };

 }, []);

 return (

 <SafeAreaView style={ styles.mainContainer }>

 { devices.length > 0 ?

 <MainScreen screen='connected' device={ devices[0] } />

 :

 <MainScreen screen='main' timerDone={ timerDone } retryScan={

createSubscription } />

 }

 </SafeAreaView>

);

};

const styles = StyleSheet.create({

 mainContainer: {

 flex: 1,

 },

 container: {

 flex: 1,

 alignItems: 'center',

 justifyContent: 'center',

 },

 loading: {

 width: 150,

 height: 150,

 marginBottom: 20,

 },

 sectionContainer: {

 marginTop: 32,

 paddingHorizontal: 24,

 },

 sectionTitle: {

 fontSize: 24,

 fontWeight: '600',

 },

 sectionDescription: {

 marginTop: 8,

 fontSize: 18,

152

 fontWeight: '400',

 },

 highlight: {

 fontWeight: '700',

 },

});

export default App;

153

BluetoothDevices.js is Bluetooth components.

import React, { useEffect, useState } from 'react';

import {

 View,

 Text,

 StyleSheet,

 TouchableOpacity,

 Button,

 Image,

 Switch,

 Linking,

 Pressable,

 Modal,

 Alert

} from 'react-native';

import { Base64 } from 'js-base64';

import Settings from './Settings';

const LED1_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c14e"; // Speakers ON/OFF

const LED2_UUID = "322e774f-c909-49c4-bd7b-48a4003a967f"; // GPS ON/OFF

const LED3_UUID = "9c7dbce8-de5f-4168-89dd-74f04f4e5842"; // Lock ON/OFF

const LED4_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c144"; // LED Lights ON/OFF

const LED5_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c145"; // Temp 1

const LED6_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c141"; // Temp 2

const LED7_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c142"; // GPS coordinates

const LED8_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c150"; // LED Settings

const LED9_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c151"; // LED Color Selector

const LED10_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c152"; // LED Effect Selector

const LED11_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c153"; // Lock Settings

const LED12_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c154"; // Temp Units

const LED13_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c155"; // Battery Level

const LED14_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c156"; // Ice Compartment 1

Notification

154

const LED15_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c157"; // Ice Compartment 2

Notification

const CharacteristicSlider = ({ onClick, characteristicState }) => {

 // const [isEnabled, setIsEnabled] = React.useState(false);

 let isEnabled = false;

 console.log("Slider rendered.");

 if (characteristicState == "ON") {

 isEnabled = true;

 } else {

 isEnabled = false;

 }

 const toggleSwitch = () => {

 //setIsEnabled(previousState => !previousState);

 onClick();

 };

 return (

 <View>

 <Switch

 trackColor={{ false: "#767577", true: "#81b0ff" }}

 thumbColor={isEnabled ? "#f5dd4b" : "#f4f3f4"}

 ios_backgroundColor="#3e3e3e"

 onValueChange={toggleSwitch}

 value={isEnabled}

 />

 </View>

);

}

const Characteristic = ({ character }) => {

 const [deviceCharacteristic, setDeviceCharacteristic] = React.useState({ uuid: 1,

value: 'test' });

 const [characteristicState, setCharacteristicState] = React.useState('OFF');

 const [type, setType] = React.useState(0);

 const [featureName, setFeatureName] = React.useState('');

 let featureNames = '';

 const setFeatureNames = (uuid) => {

 switch (uuid) {

 case LED1_UUID:

 setFeatureName('Speakers');

 break;

155

 case LED2_UUID:

 setFeatureName('GPS');

 break;

 case LED3_UUID:

 setFeatureName('Lock');

 break;

 case LED4_UUID:

 setFeatureName('LED Lights');

 break;

 case LED5_UUID:

 setFeatureName('Temp 1 Unit');

 break;

 case LED6_UUID:

 setFeatureName('Temp 2 Unit');

 break;

 case LED7_UUID:

 setFeatureName('GPS Location');

 break;

 default:

 setFeatureName('Unknown');

 }

 }

 const setTypeByUUID = (uuid) => {

 if (uuid == LED1_UUID || uuid == LED2_UUID || uuid == LED3_UUID

|| uuid == LED4_UUID) {

 setType(1);

 }

 else if (uuid == LED7_UUID) {

 setType(2);

 }

 else {

 setType(0);

 }

 }

 const readCharacteristic = () => {

 character.read().then((characteristic) => {

 //console.log('Characteristics');

 //console.log(characteristic);

 //console.log(characteristic.uuid);

 //console.log(characteristic.value);

 //console.log(Base64.decode(characteristic.value));

 setTypeByUUID(characteristic.uuid);

 setFeatureNames(characteristic.uuid);

 setCharacteristicState(Base64.decode(characteristic.value));

 //setDeviceCharacteristic(characteristic);

 })

156

 .catch((error) => {

 console.log('Catch operation: ' + error.message);

 throw error;

 });

 };

 const sendON = () => {

 let newValue = "ON";

 character.writeWithResponse(Base64.encode(newValue)).then((newCharacteristic

) => {

 console.log("New value written.");

 setCharacteristicState(newValue);

 });

 };

 const sendOFF = () => {

 let newValue = "OFF";

 character.writeWithResponse(Base64.encode(newValue)).then((newCharacteristic

) => {

 console.log("New value written.");

 setCharacteristicState(newValue);

 });

 };

 const toggleOnOff = () => {

 let newValue;

 console.log("Called toggle function");

 if (characteristicState == "OFF") {

 // Set off

 newValue = "ON";

 } else {

 newValue = "OFF";

 }

 character.writeWithResponse(Base64.encode(newValue)).then((newCharacteristic

) => {

 console.log("New value written.");

 setCharacteristicState(newValue);

 });

 };

 const googleMapsURL = 'https://www.google.com/maps/search/?api=1&query='

 const openGoogleMaps = () => {

 let latlng = characteristicState.split(',');

157

 let url = `${googleMapsURL}${latlng[0]}%2C${latlng[1]}`;

 console.log(url);

 Linking.canOpenURL(url).then((supported) => {

 console.log(supported);

 if (supported) {

 Linking.openURL(url);

 }

 });

 }

 useEffect(() => {

 // Anything in here will be fired on component mount.

 console.log('Characteristic component mounted.');

 // const subscription = manager.onStateChange((state) => {

 // if (state === 'PoweredOn') {

 // scanAndConnect();

 // subscription.remove();

 // }

 // }, true);

 readCharacteristic()

 const readIntervals = setInterval(readCharacteristic, 3000);

 return () => {

 console.log("Characteristic component Unmount.");

 //manager.destroy();

 clearInterval(readIntervals);

 };

 }, []);

 return (

 <View style={styles.characteristicContainer}>

 {/* <Button onPress={ () => readCharacteristic() } title="Read" />

*/}

 {

 //<Text>{`Feature: ${deviceCharacteristic.uuid}`}</Text>

 }

 <Text

style={styles.featureNamesText}>{featureName}</Text>

 {

 type == 1 &&

 <CharacteristicSlider onClick={ toggleOnOff }

characteristicState={ characteristicState }/>

 }

 {

 type == 0 &&

 <Text style={styles.dataText}>{ characteristicState

}</Text>

 }

 {

 (type == 2 && /\d+/.test(characteristicState)) &&

158

 <Button title="View" onPress={ openGoogleMaps

}></Button>

 }

 { /*

 characteristicState == 'OFF' ?

 <Button onPress={ () => sendON() } title="ON" />

 :

 <Button onPress={ () => sendOFF() } title="OFF" />

 */

 }

 </View>

)

}

const BatteryLevelIcon = ({ batteryCharacter }) => {

 const [batteryLevel, setBatteryLevel] = React.useState(0);

 let batteryLevelImageLink;

 const readBatteryCharacteristic = () => {

 console.log("Read battery");

 console.log(batteryLevel);

 batteryCharacter.read().then((characteristic) => {

 console.log('Characteristics');

 console.log(characteristic);

 console.log(characteristic.uuid);

 console.log(characteristic.value);

 console.log(Base64.decode(characteristic.value));

 //setTypeByUUID(characteristic.uuid);

 //setFeatureNames(characteristic.uuid);

 setBatteryLevel(Base64.decode(characteristic.value));

 //setDeviceCharacteristic(characteristic);

 })

 .catch((error) => {

 console.log('Catch operation: ' + error.message);

 throw error;

 });

 };

 if (batteryLevel < 0.2) {

 batteryLevelImageLink = require('../static/Battery201.png');

 } else if (batteryLevel >= 0.2 && batteryLevel < 0.4) {

 batteryLevelImageLink = require('../static/Battery401.png');

 } else if (batteryLevel >= 0.4 && batteryLevel < 0.6) {

 batteryLevelImageLink = require('../static/Battery601.png');

159

 } else if (batteryLevel >= 0.6 && batteryLevel < 0.8) {

 batteryLevelImageLink = require('../static/Battery801.png');

 } else {

 batteryLevelImageLink = require('../static/Battery1001.png');

 }

 useEffect(() => {

 // Anything in here will be fired on component mount.

 console.log('Battery component mounted.');

 // const subscription = manager.onStateChange((state) => {

 // if (state === 'PoweredOn') {

 // scanAndConnect();

 // subscription.remove();

 // }

 // }, true);

 readBatteryCharacteristic()

 const readIntervals = setInterval(readBatteryCharacteristic, 3000);

 return () => {

 console.log("Battery component Unmount.");

 //manager.destroy();

 clearInterval(readIntervals);

 };

 }, []);

 return (

 <View>

 <Image

 style={styles.batteryLevelIcon}

 source={ batteryLevelImageLink }

 />

 </View>

)

}

const IceNotification = ({ iceCharacter }) => {

 const [ice, setIce] = React.useState('OFF');

 const [compartment, setCompartment] = React.useState('ONE');

 const [modalVisible, setModalVisible] = useState(false);

 const setCompartmentByUUID = (uuid) => {

 if (uuid == LED14_UUID) {

 setCompartment('ONE');

 } else if (uuid == LED15_UUID) {

 setCompartment('TWO');

 }

 }

 const sendOFF = () => {

160

 let newValue = "OFF";

 iceCharacter.writeWithResponse(Base64.encode(newValue)).then((newCharacteri

stic) => {

 console.log("New value written.");

 //setCharacteristicState(newValue);

 });

 };

 const readIceCharacteristic = () => {

 iceCharacter.read().then((characteristic) => {

 console.log('ICE');

 console.log(Base64.decode(characteristic.value));

 setCompartmentByUUID(characteristic.uuid);

 setIce(Base64.decode(characteristic.value));

 })

 }

 useEffect(() => {

 // Anything in here will be fired on component mount.

 console.log('Ice component mounted.');

 // const subscription = manager.onStateChange((state) => {

 // if (state === 'PoweredOn') {

 // scanAndConnect();

 // subscription.remove();

 // }

 // }, true);

 readIceCharacteristic()

 const readIntervals = setInterval(readIceCharacteristic, 3000);

 return () => {

 console.log("Ice component Unmount.");

 //manager.destroy();

 clearInterval(readIntervals);

 };

 }, []);

 const showNotification = () => {

 if (ice == 'ON') {

 return (

 <View style={styles.centeredView}>

 <Modal

 animationType="slide"

 transparent={true}

 visible={modalVisible}

 onRequestClose={() => {

 Alert.alert("Modal has been closed.");

 setModalVisible(!modalVisible);

 }}

 >

161

 <View style={styles.centeredView}>

 <View style={styles.modalView}>

 <Text style={styles.modalText}>Compartment

{compartment} Ice Low.</Text>

 <Pressable

 style={[styles.button, styles.buttonClose]}

 onPress={() => {

 setModalVisible(!modalVisible)

 }

 }

 >

 <Text style={styles.textStyle}>Close</Text>

 </Pressable>

 </View>

 </View>

 </Modal>

 <Pressable

 style={[styles.button, styles.buttonOpen]}

 onPress={() => setModalVisible(true)}

 >

 <Text style={styles.textStyle}>Ice {compartment}</Text>

 </Pressable>

 </View>

)

 } else {

 return (

 <View>

 <Text></Text>

 </View>

)

 }

 }

 return (

 <View>

 {

 showNotification()

 }

 </View>

)

}

const Features = ({ device }) => {

 const [deviceCharacteristics, setDeviceCharacteristics] = React.useState([]);

 const [settingsState, setSettingsState] = React.useState(false);

 let characteristicsList = [];

162

 const discoverCharacteristics = () => {

 device.discoverAllServicesAndCharacteristics().then((desiredDevice) => {

 // Do work on device with services and characteristics

 return desiredDevice.services();

 })

 .then((services) => {

 let service = null;

 for (let i = 0; i < services.length; i++) {

 if (services[i].uuid === '12634d89-d598-4874-8e86-

7d042ee07ba7') {

 service = services[i];

 }

 }

 //return services[0].characteristics();

 return service.characteristics();

 })

 .then((characteristics) => {

 console.log(characteristics);

 //let characteristic = characteristics[1];

 for (let i = 0; i < characteristics.length; i++) {

 console.log(characteristics[i].uuid);

 characteristicsList = [...characteristicsList,

characteristics[i]];

 // characteristic = characteristics[i];

 }

 setDeviceCharacteristics(characteristicsList);

 // characteristics[0].descriptors().then((desc) => {

 // for (let i = 0; i < desc.length; i++) {

 // desc[i]?.read().then((val) => {

 // if (val) {

 // console.log(Base64.decode(val.value));

 // console.log(val.value);

 // console.log(val);

 // }

 // });

 // }

 // });

 })

 .catch((error) => {

 // Handle error

 });

 };

 const toggleSettingsState = () => {

 setSettingsState(!settingsState);

163

 };

 useEffect(() => {

 // Anything in here will be fired on component mount.

 console.log('Feature component mounted.');

 // const subscription = manager.onStateChange((state) => {

 // if (state === 'PoweredOn') {

 // scanAndConnect();

 // subscription.remove();

 // }

 // }, true);

 discoverCharacteristics();

 return () => {

 console.log("Feature component Unmount.");

 //manager.destroy();

 };

 }, []);

 return (

 <View>

 <View style={styles.mainBar}>

 <Pressable onPress={ toggleSettingsState }>

 {

 settingsState ?

 <Text

style={styles.backText}>Back</Text>

 :

 <Image

 style={ styles.settings }

 source={ require('../static/settings.png') }

 />

 }

 </Pressable>

 {

 deviceCharacteristics.slice(13,15).map((character, i)

=> {

 return (

 <IceNotification key={i}

iceCharacter={ character } />

)

 })

 }

 {

 deviceCharacteristics.length > 0 &&

 <BatteryLevelIcon batteryCharacter={

deviceCharacteristics[12] }/>

 }

164

 </View>

 {

 !settingsState ?

 deviceCharacteristics.slice(0,7).map((character, i)

=> {

 return (

 <Characteristic key={i} character={

character } />

)

 })

 :

 <Settings characteristics={

deviceCharacteristics.slice(7,12) }/>

 }

 </View>

)

}

const BluetoothDevice = ({ onClick, device }) => {

 const [deviceConnected, setDeviceConnected] = React.useState(false);

 const connectToDevice = (desiredDevice) => {

 console.log('Device ID: ' + desiredDevice.id);

 desiredDevice.connect()

 .then((device) => {

 device.isConnected()

 .then((connected) => {

 console.log('Device connected: ' +

connected);

 setDeviceConnected(true);

 });

 })

 .catch((error) => {

 // Handle error

 });

 };

 const disconnectToDevice = (desiredDevice) => {

 desiredDevice.cancelConnection()

 .then((device) => {

 console.log('Device disconnected.');

 setDeviceConnected(false);

 })

 .catch((error) => {

 console.log('Catch operation: ' + error.message);

 throw error;

165

 });

 }

 useEffect(() => {

 // Anything in here will be fired on component mount.

 console.log('Device component mounted.');

 // const subscription = manager.onStateChange((state) => {

 // if (state === 'PoweredOn') {

 // scanAndConnect();

 // subscription.remove();

 // }

 // }, true);

 //discoverCharacteristics();

 return () => {

 console.log("Device component Unmount.");

 //manager.destroy();

 };

 }, []);

 return (

 //<TouchableOpacity

 // style={ styles.container }

 // onPress={ () => { connectToDevice(device) } }

 // >

 <View style={styles.container}>

 <Text style={styles.localName}>{ device.localName

}</Text>

 <View style={styles.featuresContainer}>

 { deviceConnected ?

 <Features device={ device } />

 :

 <Image

 style={ styles.loading }

 source={ require('../static/connected.png') }

 />

 }

 </View>

 { deviceConnected ?

 <Button onPress={ () =>

disconnectToDevice(device) } title="Disconnect" />

 :

 <Button onPress={ () => connectToDevice(device)

} title="Connect" />

 }

 </View>

 //</TouchableOpacity>

);

}

const styles = StyleSheet.create({

166

 container: {

 flex: 1,

 alignItems: 'center',

 marginTop: 10,

 marginBottom: 10,

 },

 loading: {

 width: 150,

 height: 150,

 marginBottom: 20,

 },

 localName: {

 fontSize: 36,

 fontWeight: 'bold',

 },

 featuresContainer: {

 flex: 1,

 justifyContent: 'center',

 },

 featureNamesText: {

 fontSize: 26,

 },

 dataText: {

 fontSize: 30,

 fontWeight: 'bold',

 },

 characteristicContainer: {

 height: 70,

 width: 300,

 flexDirection: 'row',

 justifyContent: 'space-between',

 },

 mainBar: {

 flexDirection: 'row',

 justifyContent: 'space-between',

 },

 batteryLevelIcon: {

 alignSelf: 'flex-end',

 width: 30,

 height: 50,

 margin: 10,

 marginBottom: 30,

 },

 settings: {

 alignSelf: 'flex-end',

 width: 40,

 height: 40,

 margin: 10,

 marginBottom: 30,

167

 },

 backText: {

 alignSelf: 'flex-end',

 fontSize: 20,

 marginTop: 30,

 },

centeredView: {

 flex: 1,

 justifyContent: "center",

 alignItems: "center",

 marginTop: 22

 },

 modalView: {

 margin: 20,

 backgroundColor: "white",

 borderRadius: 20,

 padding: 35,

 alignItems: "center",

 shadowColor: "#000",

 shadowOffset: {

 width: 0,

 height: 2

 },

 shadowOpacity: 0.25,

 shadowRadius: 4,

 elevation: 5

 },

 button: {

 borderRadius: 20,

 padding: 10,

 elevation: 2

 },

 buttonOpen: {

 backgroundColor: "#F194FF",

 },

 buttonClose: {

 backgroundColor: "#2196F3",

 },

 textStyle: {

 color: "white",

 fontWeight: "bold",

 textAlign: "center"

 },

 modalText: {

 marginBottom: 15,

 textAlign: "center"

 }

})

export default BluetoothDevice;

168

Settings.js is settings components.

import React, { useEffect, useState } from 'react';

import {

 View,

 Text,

 StyleSheet,

 Switch,

 Button,

 Pressable,

} from 'react-native';

import { Base64 } from 'js-base64';

const LED8_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c150";

const LED9_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c151";

const LED10_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c152";

const LED11_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c153";

const LED12_UUID = "4116f8d2-9f66-4f58-a53d-fc7440e7c154";

const SettingsButton = ({title, isEnabled, onClick, temp}) => {

 return (

 <Pressable

 style={[styles.button, isEnabled && styles.buttonEnabled, temp

&& styles.buttonTemp]}

 onPress={ onClick }>

 <Text style={styles.textColor}>{title}</Text>

 </Pressable>

)

}

const SettingsCharacteristic = ({ character }) => {

 const [deviceCharacteristic, setDeviceCharacteristic] = React.useState({ uuid: 1,

value: 'test' });

 const [characteristicState, setCharacteristicState] = React.useState('OFF');

 const [type, setType] = React.useState(0);

 const [featureName, setFeatureName] = React.useState('');

 const setFeatureNames = (uuid) => {

 switch (uuid) {

 case LED8_UUID:

 setFeatureName('LED');

 break;

 case LED9_UUID:

 setFeatureName('LED Color');

 break;

 case LED10_UUID:

 setFeatureName('LED Effect');

169

 break;

 case LED11_UUID:

 setFeatureName('Lock');

 break;

 case LED12_UUID:

 setFeatureName('Temp');

 break;

 default:

 setFeatureName('Unknown');

 }

 }

 const setTypeByUUID = (uuid) => {

 if (uuid == LED8_UUID || uuid == LED11_UUID) {

 setType(0);

 }

 else if (uuid == LED9_UUID) {

 setType(1);

 }

 else if (uuid == LED10_UUID) {

 setType(2);

 }

 else {

 setType(3);

 }

 }

 const readCharacteristic = () => {

 character.read().then((characteristic) => {

 console.log('Characteristics');

 console.log(characteristic);

 console.log(characteristic.uuid);

 console.log(characteristic.value);

 //console.log(Base64.decode(characteristic.value));

 setTypeByUUID(characteristic.uuid);

 setFeatureNames(characteristic.uuid);

 setCharacteristicState(Base64.decode(characteristic.value));

 //setDeviceCharacteristic(characteristic);

 })

 .catch((error) => {

 console.log('Catch operation: ' + error.message);

 throw error;

 });

 };

 const sendValue = (value) => {

170

 character.writeWithResponse(Base64.encode(value)).then((newCharacteristic) =>

{

 console.log("New value written.");

 setCharacteristicState(value);

 });

 };

 useEffect(() => {

 // Anything in here will be fired on component mount.

 console.log('Characteristic component mounted.');

 // const subscription = manager.onStateChange((state) => {

 // if (state === 'PoweredOn') {

 // scanAndConnect();

 // subscription.remove();

 // }

 // }, true);

 readCharacteristic()

 const readIntervals = setInterval(readCharacteristic, 3000);

 return () => {

 console.log("Characteristic component Unmount.");

 //manager.destroy();

 clearInterval(readIntervals);

 };

 }, []);

 return (

 <View>

 { type === 0 &&

 <View style={styles.characteristicContainer}>

 <Text

style={styles.featureText}>{featureName}</Text>

 <View style={styles.buttonContainer}>

 <SettingsButton

 title="Auto"

 isEnabled={ characteristicState ==

'AUTO' }

 onClick={ () =>

sendValue("AUTO") }

 />

 <SettingsButton

 title="Manual"

 isEnabled={ characteristicState ==

'MANUAL' }

 onClick={ () =>

sendValue("MANUAL") }

 />

 </View>

 </View>

 }

171

 { type === 1 &&

 <View style={styles.characteristicContainer}>

 <Text

style={styles.featureText}>{featureName}</Text>

 <View>

 <SettingsButton

 title="Red"

 isEnabled={ characteristicState ==

'RED' }

 onClick={ () => sendValue("RED")

}

 />

 <SettingsButton

 title="Blue"

 isEnabled={ characteristicState ==

'BLUE' }

 onClick={ () => sendValue("BLUE")

}

 />

 <SettingsButton

 title="White"

 isEnabled={ characteristicState ==

'WHITE' }

 onClick={ () =>

sendValue("WHITE") }

 />

 </View>

 </View>

 }

 { type === 2 &&

 <View style={styles.characteristicContainer}>

 <Text

style={styles.featureText}>{featureName}</Text>

 <View>

 <SettingsButton

 title="Solid"

 isEnabled={ characteristicState ==

'SOLID' }

 onClick={ () =>

sendValue("SOLID") }

 />

 <SettingsButton

 title="Rainbow"

 isEnabled={ characteristicState ==

'RAINBOW' }

 onClick={ () =>

sendValue("RAINBOW") }

 />

 </View>

 </View>

172

 }

 { type === 3 &&

 <View style={styles.characteristicContainer}>

 <Text

style={styles.featureText}>{featureName}</Text>

 <View style={styles.buttonContainer}>

 <SettingsButton

 title="Celsius"

 isEnabled={ characteristicState ==

'CELSIUS' }

 onClick={ () =>

sendValue("CELSIUS") }

 temp={true}

 />

 <SettingsButton

 title="Fahrenheit"

 isEnabled={ characteristicState ==

'FAHRENHEIT' }

 onClick={ () =>

sendValue("FAHRENHEIT") }

 temp={true}

 />

 </View>

 </View>

 }

 </View>

);

};

const Settings = ({ characteristics }) => {

 console.log("Setting characteristicssss");

 console.log(characteristics);

 return (

 <View style={styles.container}>

 {

 characteristics.map((characteristic, i) => {

 return (

 <SettingsCharacteristic key={i}

character={characteristic} />

)

 })

 }

 </View>

);

};

const styles = StyleSheet.create({

 container: {

 flex: 1,

173

 justifyContent: 'center',

 },

 characteristicContainer: {

 paddingVertical: 10,

 width: 300,

 flexDirection: 'row',

 justifyContent: 'space-between',

 },

 buttonContainer: {

 flexDirection: 'row',

 },

 featureText: {

 fontSize: 24,

 },

 button: {

 width: 80,

 height: 35,

 paddingVertical: 10,

 paddingHorizontal: 10,

 marginHorizontal: 10,

 marginVertical: 5,

 backgroundColor: '#81b0ff',

 borderRadius: 4,

 elevation: 3,

 textAlign: 'center',

 },

 buttonTemp: {

 width: 100,

 },

 buttonEnabled: {

 backgroundColor: '#f5dd4b',

 },

 textColor: {

 color: 'black',

 textAlign: 'center',

 },

})

export default Settings;

174

Appendix G

Lessons Learned

3D Printing

A few important points were learned about the process of 3d printing. First was making

sure the printer was set to the correct settings. The filament used is ABS plastic, as it was

learned that PLA can warp when outside in the heat for too long, so ABS was the suitable

material. The program used to slice the models was Ultimaker Cura. Because some of the

models required printing surfaces that were above the build plate, the program needed to

be modified to allow printing support beams. For instance, the sliding lock that was

printed needed to have a hollow case, so the program filled in the gap with support

beams. However, looking at the print, the support beams made the part unusable, unless

the support beams were taken out by cutting and sanding.

 Another issue that can be seen is 3d printing multiple parts at once. Since the

extruder moves between each part, the plastic is being dragged across the part. In the

following prints, thin lines of plastic run throughout the part. Notice also that depending

on the orientation of the part, the print time and material used can be reduced. For the

following two prints, the orientation was upside down, seeing as the parts are hollow, if

they were printed rightside up, there would be a lot of support beams to break off.

Bluetooth Technology

For this project, Bluetooth was used for the peripherals to communicate with the mobile

app. When devices need to send and receive information without the use of WiFi,

Bluetooth tends to be the standard set for close distance communication between devices.

Bluetooth tends to be used to stream audio, or send and receive messages between

devices. There are two types of Bluetooth: Bluetooth Classic and Bluetooth Low Energy.

Bluetooth Classic vs Bluetooth Low Energy (BLE)

Both Bluetooth Classic and Bluetooth Low Energy use the 2.4 GHz frequency band to

send and receive information. However, there are differences between the two, thus each

having different uses.

175

 Bluetooth classic provides two-way communication with an application

throughput of 2.1 Mbps [4]. It’s highly effective at short distances. Bluetooth Classic is

mainly used to stream audio and is commonly used for wireless speakers, headphones,

and in-car entertainment systems [5]. It has a latency of 100 ms and up to 30 mA of

power consumption [4].

 Bluetooth Low Energy has an application throughput of 0.3 Mbps, with a limit of

20 bytes packages allowed to be send [4]. Bluetooth Low Energy is used for its

communication capabilities, but is now also used for indoor positioning [5]. It has low

power consumption (up to 15 mA, but can be 100x lower), with a range of 100 m and a

latency of 3 ms [4].

Bluetooth Properties

Bluetooth’s main advantage is being able to communicate with devices without a router

or access point. To follow the Bluetooth standard, the Bluetooth device must have a

profile defined so it can communicate with other devices. A GATT or general access

profile (GAP) defines the records of Services, Characteristics, and Descriptors. Services

are the data structure that contain Characteristics. Characteristics contain information

such as its type, value, properties and permissions. The permission allowable are read,

write, and notify. Read and write are self-explanatory, but notify means that when the

Characteristic changes, the device connected to it will be notified of the change and read

the value. Descriptors are just a general description of the Characteristic, and is optional.

Each attribute must have a UUID, either a 16-bit value, or a custom 128-bit UUID [6].

Device discovery involves the defining general access profile (GAP), where the

device that needs to be discovered is “advertising” its GAP, and the device scanning for

the advertising device is searching and connecting to it. Advertising involves sending

packets continually, so that the device scanning can detect it. The advertising device is the

Bluetooth peripheral and the scanning device is the Bluetooth central [6].

Raspberry Pi

 This project required a microcontroller that could utilize Bluetooth. The

Raspberry Pi was selected as it would have the capabilities to control the multiple

peripherals that would be needed for the Smart Cooler. Since the cooler features a GPS

module, ws281x LED light strip, an RFID module, a servo, two temperature sensors, a

176

light sensor, a touchscreen, and switching capabilities to turn on and off the Bluetooth

speakers, GPS module, and LED light strips. The cooler has a lot of features. The

Raspberry Pi was chosen, as it would allow all these devices to be controlled with one

microcontroller. Another benefit of why the Raspberry Pi was selected was that it has

Bluetooth capabilities already on board, as well as wifi.

Setting up the Raspberry Pi involved a lot of configurations. The Raspberry Pi in

this cooler uses the SPI protocol, serial port, and 1-wire communication. The different

modules needed libraries to be installed to be able to communicate with the devices. For

instance, the GPS module required the gpsd library to allow to use it. The LED light strips

use ws281x LED lights, so a specific library for those lights were required to use the light

strip. Another specification for the light strips used was that the audio on the Raspberry Pi

needed to be disabled. The RFID module requires SPI. An analog-to-digital converter was

used for the light sensor and battery level sensor to convert a simple voltage divider to

calculate a proportional value. Luckily, the Raspberry Pi is a widely popular

microcontroller, so the devices used with the Raspberry Pi were selected because they

were compatible. The Raspberry Pi contains 40 pins, 26 of them GPIO pins. Some pins

have special functions, such as SPI, I2C, and serial communication.

Quick Connects

For the locking mechanism, there were three devices that needed to share a ground. The

servo, the RFID, and the door position sensor all shared a ground. In order to connect all

three devices, a quick connect was used. The quick connect allowed the simple

connection of pushing the wires into the quick connect, and then squeezing the quick

connect closed to join the connections.

 However, upon testing it was discovered that the ground connects from the quick

connects were not connected. The door position sensor and servo was working, but not

the RFID. After checking the wiring of the RFID, the conclusion was that the ground was

possibly not connected. It was assumed that the wire gauge used for the quick connect

was too small, therefore not providing a reliable connection. The solution to this was not

to use the quick connects, but to solder all the connections together. This solved the issue.

Python Threading

Unfortunately for the program, several loops needed to be run at once. Bluetooth needed to

use a loop, the touchscreen GUI needed a loop, the LED light strip had its own loop, the

177

RFID required its own loop to wait for an RFID device to activate, and a separate loop was

run for all the sensor data. Unfortunately, not all these interfaces could be run on the same

loop, as some wait for a response, which would halt the program. To fix this, python

threading was used. Threading allows the users to run code concurrently. "A thread is a

separate flow of execution. This means that your program will have two things happening

at once. But for most Python 3 implementations the different threads do not actually execute

at the same time: they merely appear to" [29]. Initially there were more than five threads,

however, issues started to occur where some threads weren't running, so the number was

reduced.

LED Auto Feature

When the LED lights are set to auto, the Raspberry Pi reads the value of the photosensor

to determine if it is dark outside. Initially there were issues as the light from the cooler

was affecting the sensor value. Since the LED lights were so bright, when the lights are

activated, the light reflects out of the cooler and radiates to make its surrounding area

more visible, which would then cause the photosensor to tell the Raspberry Pi it was light

outside. This caused a perpetual on and off cycle where the cooler is placed outside in the

dark, the light would turn on, and since the photosensor was reading light values it would

turn off the lights. The lights would then turn back on as it was dark outside, and the cycle

would continue. To fix this, a variable was added in the program to save its state, where

once the lid is open and it is dark outside, turn and keep the lights on until the lid is

closed.

178

Biography

 Clarence Scott

I am currently working full-time as an LRU Repair

Technician while in pursuit of my Bachelors in

Electrical and Computer Engineering Technology

with a concentration in Electrical/Electronic

Systems. I am expected to graduate in the spring of

2022.

 Reuben Taveras

I am currently a student on his final year of school

pursuing a Bachelors in Electrical and Computer

Engineering Technology with a concentration in

Electrical/Electronic. My interests include science,

technology, web development, and art.

